Over Finite Fields
Orthogonal groups can also be defined over finite fields Fq, where q is a power of a prime p. When defined over such fields, they come in two types in even dimension: O+(2n, q) and O−(2n, q); and one type in odd dimension: O(2n+1, q).
If V is the vector space on which the orthogonal group G acts, it can be written as a direct orthogonal sum as follows:
where Li are hyperbolic lines and W contains no singular vectors. If W = 0, then G is of plus type. If W =
In the special case where n = 1, is a dihedral group of order .
We have the following formulas for the order of O(n, q), when the characteristic is greater than two:
If −1 is a square in Fq
If −1 is a non-square in Fq
Read more about this topic: Orthogonal Group
Famous quotes containing the words finite and/or fields:
“For it is only the finite that has wrought and suffered; the infinite lies stretched in smiling repose.”
—Ralph Waldo Emerson (18031882)
“I respect not his labors, his farm where everything has its price, who would carry the landscape, who would carry his God, to market, if he could get anything for him; who goes to market for his god as it is; on whose farm nothing grows free, whose fields bear no crops, whose meadows no flowers, whose trees no fruit, but dollars; who loves not the beauty of his fruits, whose fruits are not ripe for him till they are turned to dollars. Give me the poverty that enjoys true wealth.”
—Henry David Thoreau (18171862)