Order Topology - Ordinal Space

Ordinal Space

For any ordinal number λ one can consider the spaces of ordinal numbers

together with the natural order topology. These spaces are called ordinal spaces. (Note that in the usual set-theoretic construction of ordinal numbers we have λ = ). Obviously, these spaces are mostly of interest when λ is an infinite ordinal; otherwise (for finite ordinals), the order topology is simply the discrete topology.

When λ = ω (the first infinite ordinal), the space is the one-point compactification of N.

Of particular interest is the case when λ = ω1, the set of all countable ordinals, and the first uncountable ordinal. The element ω1 is a limit point of the subset is not first-countable. The subspace [0,ω1) is first-countable however, since the only point without a countable local base is ω1. Some further properties include

  • neither is separable or second-countable
  • is compact while [0,ω1) is sequentially compact and countably compact, but not compact or paracompact

Read more about this topic:  Order Topology

Famous quotes containing the word space:

    Sir Walter Raleigh might well be studied, if only for the excellence of his style, for he is remarkable in the midst of so many masters. There is a natural emphasis in his style, like a man’s tread, and a breathing space between the sentences, which the best of modern writing does not furnish. His chapters are like English parks, or say rather like a Western forest, where the larger growth keeps down the underwood, and one may ride on horseback through the openings.
    Henry David Thoreau (1817–1862)