Orbit Method - Compact Lie Group Case

Compact Lie Group Case

Complex irreducible representations of compact Lie groups have been completely classified. They are always finite-dimensional, unitarizable (i.e. admit an invariant positive definite Hermitian form) and are parametrized by their highest weights, which are precisely the dominant integral weights for the group. If G is a compact semisimple Lie group with a Cartan subalgebra h then its coadjoint orbits are closed and each of them intersects the positive Weyl chamber h*+ in a single point. An orbit is integral if this point belongs to the weight lattice of G. The highest weight theory can be restated in the form of a bijection between the set of integral coadjoint orbits and the set of equivalence classes of irreducible unitary representations of G: the highest weight representation L(λ) with highest weight λh*+ corresponds to the integral coadjoint orbit G·λ. The Kirillov character formula amounts to the character formula earlier proved by Harish-Chandra.

Read more about this topic:  Orbit Method

Famous quotes containing the words compact, lie, group and/or case:

    The Puritans, to keep the remembrance of their unity one with another, and of their peaceful compact with the Indians, named their forest settlement CONCORD.
    Ralph Waldo Emerson (1803–1882)

    Any fool can tell the truth, but it requires a man of some sense to know how to lie well.
    Samuel Butler (1835–1902)

    The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, “Don’t do that, You will interfere with our prosperity.” And when we ask: “where is our prosperity lodged?” a certain group of gentlemen say, “With us.”
    Woodrow Wilson (1856–1924)

    Never in any case say I have lost such a thing, but I have returned it. Is your child dead? It is a return. Is your wife dead? It is a return. Are you deprived of your estate? Is not this also a return?
    Epictetus (c. 55–135)