Orbit - Planetary Orbits

Planetary Orbits

Within a planetary system, planets, dwarf planets, asteroids (a.k.a. minor planets), comets, and space debris orbit the barycenter in elliptical orbits. A comet in a parabolic or hyperbolic orbit about a barycenter is not gravitationally bound to the star and therefore is not considered part of the star's planetary system. Bodies which are gravitationally bound to one of the planets in a planetary system, either natural or artificial satellites, follow orbits about a barycenter near that planet.

Owing to mutual gravitational perturbations, the eccentricities of the planetary orbits vary over time. Mercury, the smallest planet in the Solar System, has the most eccentric orbit. At the present epoch, Mars has the next largest eccentricity while the smallest orbital eccentricities are seen in Venus and Neptune.

As two objects orbit each other, the periapsis is that point at which the two objects are closest to each other and the apoapsis is that point at which they are the farthest from each other. (More specific terms are used for specific bodies. For example, perigee and apogee are the lowest and highest parts of an orbit around Earth, while perihelion and aphelion are the closest and farthest points of an orbit around the Sun.)

In the elliptical orbit, the center of mass of the orbiting-orbited system is at one focus of both orbits, with nothing present at the other focus. As a planet approaches periapsis, the planet will increase in speed, or velocity. As a planet approaches apoapsis, its velocity will decrease.

Read more about this topic:  Orbit

Famous quotes containing the words planetary and/or orbits:

    We cannot cheat on DNA. We cannot get round photosynthesis. We cannot say I am not going to give a damn about phytoplankton. All these tiny mechanisms provide the preconditions of our planetary life. To say we do not care is to say in the most literal sense that “we choose death.”
    Barbara Ward (1914–1981)

    To me, however, the question of the times resolved itself into a practical question of the conduct of life. How shall I live? We are incompetent to solve the times. Our geometry cannot span the huge orbits of the prevailing ideas, behold their return, and reconcile their opposition. We can only obey our own polarity.
    Ralph Waldo Emerson (1803–1882)