Optical Tweezers - History and Development

History and Development

The detection of optical scattering and gradient forces on micron sized particles was first reported in 1970 by Arthur Ashkin, a scientist working at Bell Labs. Years later, Ashkin and colleagues reported the first observation of what is now commonly referred to as an optical tweezers: a tightly focused beam of light capable of holding microscopic particles stable in three dimensions.

One of the authors of this seminal 1986 paper, United States Secretary of Energy Steven Chu, would go on to use optical tweezing in his work on cooling and trapping neutral atoms. This research earned Chu the 1997 Nobel Prize in Physics along with Claude Cohen-Tannoudji and William D. Phillips. In an interview, Steven Chu described how Ashkin had first envisioned optical tweezing as a method for trapping atoms. Ashkin was able to trap larger particles (10 to 10,000 nanometers in diameter) but it fell to Chu to extend these techniques to the trapping of neutral atoms (0.1 nanometers in diameter) utilizing resonant laser light and a magnetic gradient trap (cf. Magneto-optical trap).

In the late 1980s, Arthur Ashkin and Joseph M. Dziedzic demonstrated the first application of the technology to the biological sciences, using it to trap an individual tobacco mosaic virus and Escherichia coli bacterium. Throughout the 1990s and afterwards, researchers like Carlos Bustamante, James Spudich, and Steven Block pioneered the use of optical trap force spectroscopy to characterize molecular-scale biological motors. These molecular motors are ubiquitous in biology, and are responsible for locomotion and mechanical action within the cell. Optical traps allowed these biophysicists to observe the forces and dynamics of nanoscale motors at the single-molecule level; optical trap force-spectroscopy has since led to greater understanding of the stochastic nature of these force-generating molecules.

Optical tweezers have proven useful in other areas of biology as well. For instance, in 2003 the techniques of optical tweezers were applied in the field of cell sorting; by creating a large optical intensity pattern over the sample area, cells can be sorted by their intrinsic optical characteristics. Optical tweezers have also been used to probe the cytoskeleton, measure the visco-elastic properties of biopolymers, and study cell motility.

The Kapitsa–Dirac effect effectively demonstrated during 2001 uses standing waves of light to affect a beam of particles.

Researchers have also worked to convert optical tweezers from large, complex instruments to smaller, simpler ones, for use by those with smaller research budgets.

Read more about this topic:  Optical Tweezers

Famous quotes containing the words history and/or development:

    The history of reform is always identical; it is the comparison of the idea with the fact. Our modes of living are not agreeable to our imagination. We suspect they are unworthy. We arraign our daily employments.
    Ralph Waldo Emerson (1803–1882)

    I’ve always been impressed by the different paths babies take in their physical development on the way to walking. It’s rare to see a behavior that starts out with such wide natural variation, yet becomes so uniform after only a few months.
    Lawrence Kutner (20th century)