Optical Motion Tracking - Design

Design

An optical tracking system typically consists of 3 subsystems. The optical imaging system, the mechanical tracking platform and the tracking computer.

The optical imaging system is responsible for converting the light from the target area into digital image that the tracking computer can process. Depending on the design of the optical tracking system, the optical imaging system can vary from as simple as a standard digital camera to as specialized as an astronomical telescope on the top of a mountain. The specification of the optical imaging system determines the upper-limit of the effective range of the tracking system.

The mechanical tracking platform holds the optical imaging system and is responsible for manipulating the optical imaging system in such a way that it always points to the target being tracked. The dynamics of the mechanical tracking platform combined with the optical imaging system determines the tracking system's ability to keep the lock on a target that changes speed rapidly.

The tracking computer is responsible for capturing the images from the optical imaging system, analyzing the image to extract target position and controlling the mechanical tracking platform to follow the target. There are several challenges. First the tracking computer has to be able to capture the image at a relatively high frame rate. This posts a requirement on the bandwidth of the image capturing hardware. The second challenge is that the image processing software has to be able to extract the target image from its background and calculate its position. Several textbook image processing algorithms are designed for this task but each has its own limitations. This problem can be simplified if the tracking system can expect certain characteristics that is common in all the targets it will track. The next problem down the line is to control the tracking platform to follow the target. This is a typical control system design problem rather than a challenge, which involves modeling the system dynamics and designing controllers to control it. This will however become a challenge if the tracking platform the system has to work with is not designed for real-time and highly dynamic applications, in which case the tracking software has to compensate for the mechanical and software imperfections of the tracking platform.

Read more about this topic:  Optical Motion Tracking

Famous quotes containing the word design:

    If I knew for a certainty that a man was coming to my house with the conscious design of doing me good, I should run for my life ... for fear that I should get some of his good done to me,—some of its virus mingled with my blood.
    Henry David Thoreau (1817–1862)

    You can make as good a design out of an American turkey as a Japanese out of his native stork.
    —For the State of Illinois, U.S. public relief program (1935-1943)

    I begin with a design for a hearse.
    For Christ’s sake not black—
    nor white either—and not polished!
    Let it be weathered—like a farm wagon—
    William Carlos Williams (1883–1963)