Reynolds Number
Water flow can be described as laminar or turbulent. Laminar flow is characterized by smooth motion: neighboring particles advected by such a flow will follow similar paths. Turbulent flow is dominated by re-circulation, whorls, eddies and apparent randomness. In such a flow particles which are neighbors at one moment can find themselves widely separated later.
Reynolds number is the ratio of inertial forces to viscous forces. As the size of an organism and the strength of the current increases, inertial forces will eventually dominate, and the flow becomes turbulent (large Re). As the size and strength decrease, viscous forces eventually dominate and the flow becomes laminar (small Re).
Biologically there is an important distinction between plankton and neckton. Plankton are the aggregate of relatively passive organisms which float or drift with the currents, such as tiny algae and bacteria, small eggs and larvae of marine organisms, and protozoa and other minute predators. Nekton are the aggregate of actively swimming organisms which are able to move independently of water currents, such as shrimps, forage fish and sharks.
As a rule of thumb, plankton are small and, if they swim at all, do so at biologically low Reynolds numbers (0.001 to 10), where the viscous behaviour of water dominates and reversible flows are the rule. Nekton, on the other hand, are larger and swim at biologically high Reynolds numbers (103 to 109), where inertial flows are the rule and eddies (vortices) are easily shed. Many organisms, such as jellyfish and most fish, start life as larva and other tiny members of the plankton community, swimming at low Reynolds numbers, but become nekton as they grow large enough to swim at high Reynolds numbers.
Read more about this topic: Oceanic Physical-biological Process
Famous quotes containing the words reynolds and/or number:
“If you have great talents, industry will improve them: if you have but moderate abilities, industry will supply their deficiency.”
—Sir Joshua Reynolds (17231792)
“Nothing ever prepares a couple for having a baby, especially the first one. And even baby number two or three, the surprises and challenges, the cosmic curve balls, keep on coming. We cant believe how much children change everythingthe time we rise and the time we go to bed; the way we fight and the way we get along. Even when, and if, we make love.”
—Susan Lapinski (20th century)