Observation - Observation in Science

Observation in Science

The scientific method requires observations of nature to formulate and test hypotheses. It consists of these steps:

  1. Asking a question about a natural phenomenon
  2. Making observations of the phenomenon
  3. Hypothesizing an explanation for the phenomenon
  4. Predicting a logical consequence of the hypothesis
  5. Testing the hypothesis by an experiment, an observational study, or a field study
  6. Creating a conclusion with data gathered in the experiment

Observation plays a role in the second and fifth steps of the Scientific Method. However the need for reproducibility requires that observations by different observers can be comparable. Human sense impressions are subjective and qualitative making them difficult to record or compare. The idea of measurement evolved to allow recording and comparison of observations made at different times and places by different people. Measurement consists of using observation to compare the thing being measured to a standard; an artifact, process or definition which can be duplicated or shared by all observers, and counting how many of the standard units are comparable to the object. Measurement reduces an observation to a number which can be recorded, and two observations which result in the same number are equal within the resolution of the process.

Senses are limited, and are subject to errors in perception such as optical illusions. Scientific instruments were developed to magnify human powers of observation, such as weighing scales, clocks, telescopes, microscopes, thermometers, cameras, and tape recorders, and also translate into perceptible form events that are unobservable by human senses, such as indicator dyes, voltmeters, spectrometers, infrared cameras, oscilloscopes, interferometers, geiger counters, x-ray machines, and radio receivers.

One problem encountered throughout scientific fields is that the observation may affect the process being observed, resulting in a different outcome than if the process was unobserved. This is called the observer effect. For example, it is not normally possible to check the air pressure in an automobile tire without letting out some of the air, thereby changing the pressure. However, in most fields of science it is possible to reduce the effects of observation to insignificance by using better instruments.

Considered as a physical process itself, all forms of observation (human or instrumental) involve amplification and are thus thermodynamically irreversible processes, increasing entropy.

Read more about this topic:  Observation

Famous quotes containing the words observation in, observation and/or science:

    It is, in both cases, that a spiritual life has been imparted to nature; that the solid seeming block of matter has been pervaded and dissolved by a thought; that this feeble human being has penetrated the vast masses of nature with an informing soul, and recognised itself in their harmony, that is, seized their law. In physics, when this is attained, the memory disburthens itself of its cumbrous catalogues of particulars, and carries centuries of observation in a single formula.
    Ralph Waldo Emerson (1803–1882)

    Nor has science sufficient humanity, so long as the naturalist overlooks the wonderful congruity which subsists between man and the world; of which he is lord, not because he is the most subtile inhabitant, but because he is its head and heart, and finds something of himself in every great and small thing, in every mountain stratum, in every new law of color, fact of astronomy, or atmospheric influence which observation or analysis lay open.
    Ralph Waldo Emerson (1803–1882)

    But don’t despise error. When touched by genius, when led by chance, the most superior truth can come into being from even the most foolish error. The important inventions which have been brought about in every realm of science from false hypotheses number in the hundreds, indeed in the thousands.
    Stefan Zweig (18811942)