Nuclear Weapon Yield - Calculating Yields and Controversy

Calculating Yields and Controversy

Yields of nuclear explosions can be very hard to calculate, even using numbers as rough as in the kiloton or megaton range (much less down to the resolution of individual terajoules). Even under very controlled conditions, precise yields can be very hard to determine, and for less controlled conditions the margins of error can be quite large. Yields can be calculated in a number of ways, including calculations based on blast size, blast brightness, seismographic data, and the strength of the shock wave. Enrico Fermi famously made a (very) rough calculation of the yield of the Trinity test by dropping small pieces of paper in the air and measuring at how far they were moved by the shock wave of the explosion.

A good approximation of the yield of the Trinity test device was obtained in 1950 from simple dimensional analysis as well as an estimation of the heat capacity for very hot air, by the British physicist G. I. Taylor. Taylor had initially done this highly classified work in mid-1941, and published a paper which included an analysis of the Trinity data fireball when the Trinity photograph data was declassified in 1950 (after the USSR had exploded its own version of this bomb).

Taylor noted that the radius R of the blast should initially depend only on the energy E of the explosion, the time t after the detonation, and the density ρ of the air. The only number having dimensions of length that can be constructed from these quantities is:

Here S is a dimensionless constant having a value approximately equal to 1, since it is low order function of the heat capacity ratio or adiabatic index (γ = Cp/ Cv), which is approximately 1 for all conditions.

Using the picture of the Trinity test shown here (which had been publicly released by the U.S. government and published in Life magazine), using successive frames or the explosion, Taylor found that R5/t2 is a constant in a given nuclear blast (especially between 0.38 ms after the shock wave has formed, and 1.93 ms before significant energy is lost by thermal radiation). Furthermore, he estimated a value for S numerically at 1.

Thus, with t = 0.025 s and the blast radius was 140 metres, and taking ρ to be 1 kg/m³ (the measured value at Trinity on the day of the test, as opposed to sea level values of approximately 1.3 kg/m³) and solving for E, Taylor obtained that the yield was about 22 kilotons of TNT (90 TJ). This does not take into account the fact that the energy should only be about half this value for a hemispherical blast, but this very simple argument did agree to within 10% with the official value of the bomb's yield in 1950, which was 20 kilotons of TNT (84 TJ) (See G. I. Taylor, Proc. Roy. Soc. London A 200, pp. 235–247 (1950).)

A good approximation to Taylor's constant S for γ below about 2 is: S = 1/5. . The value of the heat capacity ratio here is between the 1.67 of fully dissociated air molecules and the lower value for very hot diatomic air (1.2), and under conditions of an atomic fireball is (coincidentally) close to the S.T.P. (standard) gamma for room temperature air, which is 1.4. This gives the value of Taylor's S constant to be 1.036 for the adiabatic hypershock region where the constant R5/t2 condition holds.

Read more about this topic:  Nuclear Weapon Yield

Famous quotes containing the words calculating, yields and/or controversy:

    What our children have to fear is not the cars on the highways of tomorrow but our own pleasure in calculating the most elegant parameters of their deaths.
    —J.G. (James Graham)

    Do you really think, Arthur, that it is weakness that yields to temptation? I tell you that there are terrible temptations that it requires strength, strength and courage, to yield to.
    Oscar Wilde (1854–1900)

    Ours was a highly activist administration, with a lot of controversy involved ... but I’m not sure that it would be inconsistent with my own political nature to do it differently if I had it to do all over again.
    Jimmy Carter (James Earl Carter, Jr.)