Normalizing Constant - Definition and Examples

Definition and Examples

In probability theory, a normalizing constant is a constant by which an everywhere non-negative function must be multiplied so the area under its graph is 1, e.g., to make it a probability density function or a probability mass function. For example, if we define

we have

if we define function as

so that

Function is a probability density function. This is the density of the standard normal distribution. (Standard, in this case, means the expected value is 0 and the variance is 1.)

And constant is the normalizing constant of function .

Similarly,

and consequently

is a probability mass function on the set of all nonnegative integers. This is the probability mass function of the Poisson distribution with expected value λ.

Note that if the probability density function is a function of various parameters, so too will be its normalizing constant. The parametrised normalizing constant for the Boltzmann distribution plays a central role in statistical mechanics. In that context, the normalizing constant is called the partition function.

Read more about this topic:  Normalizing Constant

Famous quotes containing the words definition and/or examples:

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)