Nonlinear Programming - Methods For Solving The Problem

Methods For Solving The Problem

If the objective function f is linear and the constrained space is a polytope, the problem is a linear programming problem, which may be solved using well known linear programming solutions.

If the objective function is concave (maximization problem), or convex (minimization problem) and the constraint set is convex, then the program is called convex and general methods from convex optimization can be used in most cases.

If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming techniques.

Several methods are available for solving nonconvex problems. One approach is to use special formulations of linear programming problems. Another method involves the use of branch and bound techniques, where the program is divided into subclasses to be solved with convex (minimization problem) or linear approximations that form a lower bound on the overall cost within the subdivision. With subsequent divisions, at some point an actual solution will be obtained whose cost is equal to the best lower bound obtained for any of the approximate solutions. This solution is optimal, although possibly not unique. The algorithm may also be stopped early, with the assurance that the best possible solution is within a tolerance from the best point found; such points are called ε-optimal. Terminating to ε-optimal points is typically necessary to ensure finite termination. This is especially useful for large, difficult problems and problems with uncertain costs or values where the uncertainty can be estimated with an appropriate reliability estimation.

Under differentiability and constraint qualifications, the Karush–Kuhn–Tucker (KKT) conditions provide necessary conditions for a solution to be optimal. Under convexity, these conditions are also sufficient.

Read more about this topic:  Nonlinear Programming

Famous quotes containing the words solving the problem, methods, solving and/or problem:

    More than a decade after our fellow citizens began bedding down on the sidewalks, their problems continue to seem so intractable that we have begun to do psychologically what government has been incapable of doing programmatically. We bring the numbers down—not by solving the problem, but by deciding it’s their own damn fault.
    Anna Quindlen (b. 1952)

    Commerce is unexpectedly confident and serene, alert, adventurous, and unwearied. It is very natural in its methods withal, far more so than many fantastic enterprises and sentimental experiments, and hence its singular success.
    Henry David Thoreau (1817–1862)

    If we parents accept that problems are an essential part of life’s challenges, rather than reacting to every problem as if something has gone wrong with universe that’s supposed to be perfect, we can demonstrate serenity and confidence in problem solving for our kids....By telling them that we know they have a problem and we know they can solve it, we can pass on a realistic attitude as well as empower our children with self-confidence and a sense of their own worth.
    Barbara Coloroso (20th century)

    It is very comforting to believe that leaders who do terrible things are, in fact, mad. That way, all we have to do is make sure we don’t put psychotics in high places and we’ve got the problem solved.
    Tom Wolfe (b. 1931)