Non-ionizing Radiation

Non-ionizing Radiation

Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged ions when passing through matter, the electromagnetic radiation has sufficient energy only for excitation, the movement of an electron to a higher energy state. The region at which radiation becomes considered as "ionizing" is not well defined, since different molecules and atoms ionize at different energies. The usual definitions have suggested that radiation with particle or photon energies less than 10 electronvolts (eV) be considered non-ionizing. Another suggested threshold is 33 electronvolts, which is the energy needed to ionize water molecules. The light from the Sun that reaches the earth is largely composed of non-ionizing radiation, since the ionizing far-ultraviolet rays have been filtered out by the gases in the atmosphere, particularly oxygen. The remaining ultraviolet radiation from the Sun is in the non-ionizing band, and causes molecular damage (for example, sunburn) by photochemical and free-radical-producing means that do not ionize.

Different biological effects are observed for different types of non-ionizing radiation. A difficulty is that there is no controversy that the upper frequencies of non-ionizing radiation near these energies (much of the spectrum of UV light and some visible light) is capable of non-thermal biological damage, similar to ionizing radiation. Health debate therefore centers on the non-thermal effects of radiation of much lower frequencies (microwave and radiowave radiation).

Read more about Non-ionizing Radiation:  Mechanisms of Interaction With Matter, Including Living Tissue, Health Risks, See Also

Famous quotes containing the word radiation:

    There are no accidents, only nature throwing her weight around. Even the bomb merely releases energy that nature has put there. Nuclear war would be just a spark in the grandeur of space. Nor can radiation “alter” nature: she will absorb it all. After the bomb, nature will pick up the cards we have spilled, shuffle them, and begin her game again.
    Camille Paglia (b. 1947)