Quantification
The noise level in an electronic system is typically measured as an electrical power N in watts or dBm, a root mean square (RMS) voltage (identical to the noise standard deviation) in volts, dBμV or a mean squared error (MSE) in volts squared. Noise may also be characterized by its probability distribution and noise spectral density N0(f) in watts per hertz.
A noise signal is typically considered as a linear addition to a useful information signal. Typical signal quality measures involving noise are signal-to-noise ratio (SNR or S/N), signal-to-quantization noise ratio (SQNR) in analog-to-digital coversion and compression, peak signal-to-noise ratio (PSNR) in image and video coding, Eb/N0 in digital transmission, carrier to noise ratio (CNR) before the detector in carrier-modulated systems, and noise figure in cascaded amplifiers.
Noise is a random process, characterized by stochastic properties such as its variance, distribution, and spectral density. The spectral distribution of noise can vary with frequency, so its power density is measured in watts per hertz (W/Hz). Since the power in a resistive element is proportional to the square of the voltage across it, noise voltage (density) can be described by taking the square root of the noise power density, resulting in volts per root hertz . Integrated circuit devices, such as operational amplifiers commonly quote equivalent input noise level in these terms (at room temperature).
Noise power is measured in Watts or decibels (dB) relative to a standard power, usually indicated by adding a suffix after dB. Examples of electrical noise-level measurement units are dBu, dBm0, dBrn, dBrnC, and dBrn(f1 − f2), dBrn(144-line).
Noise levels are usually viewed in opposition to signal levels and so are often seen as part of a signal-to-noise ratio (SNR). Telecommunication systems strive to increase the ratio of signal level to noise level in order to effectively transmit data. In practice, if the transmitted signal falls below the level of the noise (often designated as the noise floor) in the system, data can no longer be decoded at the receiver. Noise in telecommunication systems is a product of both internal and external sources to the system.
Read more about this topic: Noise (electronics)