Noble Gas - History

History

Noble gas is translated from the German noun Edelgas, first used in 1898 by Hugo Erdmann to indicate their extremely low level of reactivity. The name makes an analogy to the term "noble metals", which also have low reactivity. The noble gases have also been referred to as inert gases, but this label is deprecated as many noble gas compounds are now known. Rare gases is another term that was used, but this is also inaccurate because argon forms a fairly considerable part (0.94% by volume, 1.3% by mass) of the Earth's atmosphere.

Pierre Janssen and Joseph Norman Lockyer discovered a new element on August 18, 1868 while looking at the chromosphere of the Sun, and named it helium after the Greek word for the Sun, ήλιος (ílios or helios). No chemical analysis was possible at the time, but helium was later found to be a noble gas. Before them, in 1784, the English chemist and physicist Henry Cavendish had discovered that air contains a small proportion of a substance less reactive than nitrogen. A century later, in 1895, Lord Rayleigh discovered that samples of nitrogen from the air were of a different density than nitrogen resulting from chemical reactions. Along with scientist William Ramsay at University College, London, Lord Rayleigh theorized that the nitrogen extracted from air was mixed with another gas, leading to an experiment that successfully isolated a new element, argon, from the Greek word αργός (argós, "inactive"). With this discovery, they realized an entire class of gases was missing from the periodic table. During his search for argon, Ramsay also managed to isolate helium for the first time while heating cleveite, a mineral. In 1902, having accepted the evidence for the elements helium and argon, Dmitri Mendeleev included these noble gases as group 0 in his arrangement of the elements, which would later become the periodic table.

Ramsay continued to search for these gases using the method of fractional distillation to separate liquid air into several components. In 1898, he discovered the elements krypton, neon, and xenon, and named them after the Greek words κρυπτός (kryptós, "hidden"), νέος (néos, "new"), and ξένος (xénos, "stranger"), respectively. Radon was first identified in 1898 by Friedrich Ernst Dorn, and was named radium emanation, but was not considered a noble gas until 1904 when its characteristics were found to be similar to those of other noble gases. Rayleigh and Ramsay received the 1904 Nobel Prizes in Physics and in Chemistry, respectively, for their discovery of the noble gases; in the words of J. E. Cederblom, then president of the Royal Swedish Academy of Sciences, "the discovery of an entirely new group of elements, of which no single representative had been known with any certainty, is something utterly unique in the history of chemistry, being intrinsically an advance in science of peculiar significance".

The discovery of the noble gases aided in the development of a general understanding of atomic structure. In 1895, French chemist Henri Moissan attempted to form a reaction between fluorine, the most electronegative element, and argon, one of the noble gases, but failed. Scientists were unable to prepare compounds of argon until the end of the 20th century, but these attempts helped to develop new theories of atomic structure. Learning from these experiments, Danish physicist Niels Bohr proposed in 1913 that the electrons in atoms are arranged in shells surrounding the nucleus, and that for all noble gases except helium the outermost shell always contains eight electrons. In 1916, Gilbert N. Lewis formulated the octet rule, which concluded an octet of electrons in the outer shell was the most stable arrangement for any atom; this arrangement caused them to be unreactive with other elements since they did not require any more electrons to complete their outer shell.

In 1962 Neil Bartlett discovered the first chemical compound of a noble gas, xenon hexafluoroplatinate. Compounds of other noble gases were discovered soon after: in 1962 for radon, radon difluoride, and in 1963 for krypton, krypton difluoride (KrF2). The first stable compound of argon was reported in 2000 when argon fluorohydride (HArF) was formed at a temperature of 40 K (−233.2 °C; −387.7 °F).

In December 1998, scientists at the Joint Institute for Nuclear Research working in Dubna, Russia bombarded plutonium (Pu) with calcium (Ca) to produce a single atom of element 114, flerovium (Fl). Preliminary chemistry experiments have indicated this element may be the first superheavy element to show abnormal noble-gas-like properties, even though it is a member of group 14 on the periodic table. In October 2006, scientists from the Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory successfully created synthetically ununoctium (Uuo), the seventh element in group 18, by bombarding californium (Cf) with calcium (Ca).

Read more about this topic:  Noble Gas

Famous quotes containing the word history:

    The reverence for the Scriptures is an element of civilization, for thus has the history of the world been preserved, and is preserved.
    Ralph Waldo Emerson (1803–1882)

    Considered in its entirety, psychoanalysis won’t do. It’s an end product, moreover, like a dinosaur or a zeppelin; no better theory can ever be erected on its ruins, which will remain for ever one of the saddest and strangest of all landmarks in the history of twentieth-century thought.
    Peter B. Medawar (1915–1987)

    The history of the world is the record of the weakness, frailty and death of public opinion.
    Samuel Butler (1835–1902)