Newton's Theorem of Revolving Orbits - Precession of The Moon's Orbit

Precession of The Moon's Orbit

The motion of the Moon can be measured accurately, and is noticeably more complex than that of the planets. The ancient Greek astronomers, Hipparchus and Ptolemy, had noted several periodic variations in the Moon's orbit, such as small oscillations in its orbital eccentricity and the inclination of its orbit to the plane of the ecliptic. These oscillations generally occur on a once-monthly or twice-monthly time-scale. The line of its apses precesses gradually with a period of roughly 8.85 years, while its line of nodes turns a full circle in roughly double that time, 18.6 years. This accounts for the roughly 18-year periodicity of eclipses, the so-called Saros cycle. However, both lines experience small fluctuations in their motion, again on the monthly time-scale.

In 1673, Jeremiah Horrocks published a reasonably accurate model of the Moon's motion in which the Moon was assumed to follow a precessing elliptical orbit. An sufficiently accurate and simple method for predicting the Moon's motion would have solved the navigational problem of determining a ship's longitude; in Newton's time, the goal was to predict the Moon's position to 2' (two arc-minutes), which would correspond to a 1° error in terrestrial longitude. Horrocks' model predicted the lunar position with errors no more than 10 arc-minutes; for comparison, the diameter of the Moon is roughly 30 arc-minutes.

Newton used his theorem of revolving orbits in two ways to account for the apsidal precession of the Moon. First, he showed that the Moon's observed apsidal precession could be accounted for by changing the force law of gravity from an inverse-square law to a power law in which the exponent was 2 + 4/243 (roughly 2.0165)


F(r) = - \frac{GMm}{r^{2 + 4/243}}

In 1894, Asaph Hall adopted this approach of modifying the exponent in the inverse-square law slightly to explain an anomalous orbital precession of the planet Mercury, which had been observed in 1859 by Urbain Le Verrier. Ironically, Hall's theory was ruled out by careful astronomical observations of the Moon. The currently accepted explanation for this precession involves the theory of general relativity, which (to first approximation) adds an inverse-quartic force, i.e., one that varies as the inverse fourth power of distance.

As a second approach to explaining the Moon's precession, Newton suggested that the perturbing influence of the Sun on the Moon's motion might be approximately equivalent to an additional linear force


F(r) = \frac{A}{r^{2}} + B r

The first term corresponds to the gravitational attraction between the Moon and the Earth, where r is the Moon's distance from the Earth. The second term, so Newton reasoned, might represent the average perturbing force of the Sun's gravity of the Earth-Moon system. Such a force law could also result if the Earth were surrounded by a spherical dust cloud of uniform density. Using the formula for k for nearly circular orbits, and estimates of A and B, Newton showed that this force law could not account for the Moon's precession, since the predicted apsidal angle α was (≈ 180.76°) rather than the observed α (≈ 181.525°). For every revolution, the long axis would rotate 1.5°, roughly half of the observed 3.0°

Read more about this topic:  Newton's Theorem Of Revolving Orbits

Famous quotes containing the words precession of the, precession of, precession, moon and/or orbit:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    Rain falls into the open eyes of the dead
    Again again with its pointless sound
    When the moon finds them they are the color of everything
    William Stanley Merwin (b. 1927)

    The human spirit is itself the most wonderful fairy tale that can possibly be. What a magnificent world lies enclosed within our bosoms! No solar orbit hems it in, the inexhaustible wealth of the total visible creation is outweighed by its riches!
    —E.T.A.W. (Ernst Theodor Amadeus Wilhelm)