Newton's Theorem of Revolving Orbits - Mathematical Statement

Mathematical Statement

Consider a particle moving under an arbitrary central force F1(r) whose magnitude depends only on the distance r between the particle and a fixed center. Since the motion of a particle under a central force always lies in a plane, the position of the particle can be described by polar coordinates (r, θ1), the radius and angle of the particle relative to the center of force (Figure 1). Both of these coordinates, r(t) and θ1(t), change with time t as the particle moves.

Imagine a second particle with the same mass m and with the same radial motion r(t), but one whose angular speed is k times faster than that of the first particle, where k is any constant. In other words, the azimuthal angles of the two particles are related by the equation θ2(t) = k θ1(t). Newton showed that the motion of the second particle can be produced by adding an inverse-cube central force to whatever force F1(r) acts on the first particle


F_2(r) - F_1(r) = \frac{L_1^2}{mr^3} \left( 1 - k^2 \right)

where L1 is the magnitude of the first particle's angular momentum, which is a constant of motion (conserved) for central forces.

If k2 is greater than one, F2F1 is a negative number; thus, the added inverse-cube force is attractive, as observed in the green planet of Figures 1–4 and 9. By contrast, if k2 is less than one, F2F1 is a positive number; the added inverse-cube force is repulsive, as observed in the green planet of Figures 5 and 10, and in the red planet of Figures 4 and 5.

Read more about this topic:  Newton's Theorem Of Revolving Orbits

Famous quotes containing the words mathematical and/or statement:

    The most distinct and beautiful statement of any truth must take at last the mathematical form.
    Henry David Thoreau (1817–1862)

    Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasn’t written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.
    Robert Benchley (1889–1945)