Neutron Capture - Neutron Absorbers

Neutron Absorbers

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.

The most important neutron absorber is 10boron as 10B4C in control rods, or boric acid as a coolant water additive in PWRs. Other important neutron absorbers that are used in nuclear reactors are xenon, cadmium, hafnium, gadolinium, cobalt, samarium, titanium, dysprosium, erbium, europium, molybdenum and ytterbium; all of which usually consist of mixtures of various isotopes—some of which are excellent neutron-absorbers. These also occur in combinations such as Mo2B5, hafnium diboride, titanium diboride, dysprosium titanate and gadolinium titanate.

Hafnium, one of the last stable elements to be discovered, presents an interesting case. Even though hafnium is a heavier element, its electron configuration makes it practically identical with the element zirconium, and they are always found in the same ores. However, their nuclear properties are different in a profound way. Hafnium absorbs neutrons avidly (Hf absorbs 600 times more than Zr), and it can be used in reactor control rods, whereas natural zirconium is practically transparent to neutrons. So, zirconium is a very desirable construction material for reactor internal parts, including the metallic cladding of the fuel rods which contain either uranium, plutonium, or mixed oxides of the two elements (MOX fuel).

Hence, it is quite important to be able to separate the zirconium from the hafnium in their naturally-occurring alloy. This can only be done inexpensively by using modern chemical ion-exchange resins. Similar resins are also used in reprocessing nuclear fuel rods, when it is necessary to separate uranium and plutonium, and sometimes thorium.

Read more about this topic:  Neutron Capture