Nernst Equation - Relation To Equilibrium

Relation To Equilibrium

At equilibrium, E = 0 and Q = K. Therefore


\begin{align}
0 &= E^o - \frac{RT}{nF} \ln K\\
\ln K &= \frac{nFE^o}{RT}
\end{align}

Or at standard temperature,

We have thus related the standard electrode potential and the equilibrium constant of a redox reaction.

Read more about this topic:  Nernst Equation

Famous quotes containing the words relation to, relation and/or equilibrium:

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)

    Every word was once a poem. Every new relation is a new word.
    Ralph Waldo Emerson (1803–1882)

    When a person hasn’t in him that which is higher and stronger than all external influences, it is enough for him to catch a good cold in order to lose his equilibrium and begin to see an owl in every bird, to hear a dog’s bark in every sound.
    Anton Pavlovich Chekhov (1860–1904)