Formal Construction of Negative Integers
See also: Integer#ConstructionIn a similar manner to rational numbers, we can extend the natural numbers N to the integers Z by defining integers as an ordered pair of natural numbers (a, b). We can extend addition and multiplication to these pairs with the following rules:
- (a, b) + (c, d) = (a + c, b + d)
- (a, b) × (c, d) = (a × c + b × d, a × d + b × c)
We define an equivalence relation ~ upon these pairs with the following rule:
- (a, b) ~ (c, d) if and only if a + d = b + c.
This equivalence relation is compatible with the addition and multiplication defined above, and we may define Z to be the quotient set N²/~, i.e. we identify two pairs (a, b) and (c, d) if they are equivalent in the above sense. Note that Z, equipped with these operations of addition and multiplication, is a ring, and is in fact, the prototypical example of a ring.
We can also define a total order on Z by writing
- (a, b) ≤ (c, d) if and only if a + d ≤ b + c.
This will lead to an additive zero of the form (a, a), an additive inverse of (a, b) of the form (b, a), a multiplicative unit of the form (a + 1, a), and a definition of subtraction
- (a, b) − (c, d) = (a + d, b + c).
This construction is a special case of the Grothendieck construction.
Read more about this topic: Negative Number
Famous quotes containing the words formal, construction and/or negative:
“That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prizedall these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.”
—Fred Rogers (20th century)
“The construction of life is at present in the power of facts far more than convictions.”
—Walter Benjamin (18921940)
“Isolation in creative work is an onerous thing. Better to have negative criticism than nothing at all.”
—Anton Pavlovich Chekhov (18601904)