Negative Number - Formal Construction of Negative Integers

Formal Construction of Negative Integers

See also: Integer#Construction

In a similar manner to rational numbers, we can extend the natural numbers N to the integers Z by defining integers as an ordered pair of natural numbers (a, b). We can extend addition and multiplication to these pairs with the following rules:

(a, b) + (c, d) = (a + c, b + d)
(a, b) × (c, d) = (a × c + b × d, a × d + b × c)

We define an equivalence relation ~ upon these pairs with the following rule:

(a, b) ~ (c, d) if and only if a + d = b + c.

This equivalence relation is compatible with the addition and multiplication defined above, and we may define Z to be the quotient set N²/~, i.e. we identify two pairs (a, b) and (c, d) if they are equivalent in the above sense. Note that Z, equipped with these operations of addition and multiplication, is a ring, and is in fact, the prototypical example of a ring.

We can also define a total order on Z by writing

(a, b) ≤ (c, d) if and only if a + db + c.

This will lead to an additive zero of the form (a, a), an additive inverse of (a, b) of the form (b, a), a multiplicative unit of the form (a + 1, a), and a definition of subtraction

(a, b) − (c, d) = (a + d, b + c).

This construction is a special case of the Grothendieck construction.

Read more about this topic:  Negative Number

Famous quotes containing the words formal, construction and/or negative:

    The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.
    Edgar Lee Masters (1869–1950)

    The construction of life is at present in the power of facts far more than convictions.
    Walter Benjamin (1892–1940)

    Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.
    Jane Rule (b. 1931)