Near-field Scanning Optical Microscope
Near-field scanning optical microscopy (NSOM/SNOM) is a microscopy technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. This is done by placing the detector very close (distance much smaller than wavelength λ) to the specimen surface. This allows for the surface inspection with high spatial, spectral and temporal resolving power. With this technique, the resolution of the image is limited by the size of the detector aperture and not by the wavelength of the illuminating light. In particular, lateral resolution of 20 nm and vertical resolution of 2–5 nm have been demonstrated. As in optical microscopy, the contrast mechanism can be easily adapted to study different properties, such as refractive index, chemical structure and local stress. Dynamic properties can also be studied at a sub-wavelength scale using this technique.
NSOM/SNOM is a form of scanning probe microscopy.
Read more about Near-field Scanning Optical Microscope: History, Theory, Instrumentation and Standard Setup, Near-field Spectroscopy, Artifacts, Limitations
Famous quotes containing the word optical:
“People who have realized that this is a dream imagine that it is easy to wake up, and are angry with those who continue sleeping, not considering that the whole world that environs them does not permit them to wake. Life proceeds as a series of optical illusions, artificial needs and imaginary sensations.”
—Alexander Herzen (18121870)