Natural Transformation - Functor Categories

Functor Categories

If C is any category and I is a small category, we can form the functor category CI having as objects all functors from I to C and as morphisms the natural transformations between those functors. This forms a category since for any functor F there is an identity natural transformation 1F : FF (which assigns to every object X the identity morphism on F(X)) and the composition of two natural transformations (the "vertical composition" above) is again a natural transformation.

The isomorphisms in CI are precisely the natural isomorphisms. That is, a natural transformation η : FG is a natural isomorphism if and only if there exists a natural transformation ε : GF such that ηε = 1G and εη = 1F.

The functor category CI is especially useful if I arises from a directed graph. For instance, if I is the category of the directed graph • → •, then CI has as objects the morphisms of C, and a morphism between φ : UV and ψ : XY in CI is a pair of morphisms f : UX and g : VY in C such that the "square commutes", i.e. ψ f = g φ.

More generally, one can build the 2-category Cat whose

  • 0-cells (objects) are the small categories,
  • 1-cells (arrows) between two objects and are the functors from to ,
  • 2-cells between two 1-cells (functors) and are the natural transformations from to .

The horizontal and vertical compositions are the compositions between natural transformations described previously. A functor category is then simply a hom-category in this category (smallness issues aside).

Read more about this topic:  Natural Transformation

Famous quotes containing the word categories:

    Kitsch ... is one of the major categories of the modern object. Knick-knacks, rustic odds-and-ends, souvenirs, lampshades, and African masks: the kitsch-object is collectively this whole plethora of “trashy,” sham or faked objects, this whole museum of junk which proliferates everywhere.... Kitsch is the equivalent to the “cliché” in discourse.
    Jean Baudrillard (b. 1929)