Natural Transformation - Functor Categories

Functor Categories

If C is any category and I is a small category, we can form the functor category CI having as objects all functors from I to C and as morphisms the natural transformations between those functors. This forms a category since for any functor F there is an identity natural transformation 1F : FF (which assigns to every object X the identity morphism on F(X)) and the composition of two natural transformations (the "vertical composition" above) is again a natural transformation.

The isomorphisms in CI are precisely the natural isomorphisms. That is, a natural transformation η : FG is a natural isomorphism if and only if there exists a natural transformation ε : GF such that ηε = 1G and εη = 1F.

The functor category CI is especially useful if I arises from a directed graph. For instance, if I is the category of the directed graph • → •, then CI has as objects the morphisms of C, and a morphism between φ : UV and ψ : XY in CI is a pair of morphisms f : UX and g : VY in C such that the "square commutes", i.e. ψ f = g φ.

More generally, one can build the 2-category Cat whose

  • 0-cells (objects) are the small categories,
  • 1-cells (arrows) between two objects and are the functors from to ,
  • 2-cells between two 1-cells (functors) and are the natural transformations from to .

The horizontal and vertical compositions are the compositions between natural transformations described previously. A functor category is then simply a hom-category in this category (smallness issues aside).

Read more about this topic:  Natural Transformation

Famous quotes containing the word categories:

    The analogy between the mind and a computer fails for many reasons. The brain is constructed by principles that assure diversity and degeneracy. Unlike a computer, it has no replicative memory. It is historical and value driven. It forms categories by internal criteria and by constraints acting at many scales, not by means of a syntactically constructed program. The world with which the brain interacts is not unequivocally made up of classical categories.
    Gerald M. Edelman (b. 1928)