Natural Oil Polyols - Sources of Natural Oil Polyols

Sources of Natural Oil Polyols

Ninety percent of the fatty acids that make up castor oil is ricinoleic acid, which has a hydroxyl group on C-12 and a carbon-carbon double bond. The structure below shows the major component of castor oil which is composed of the tri-ester of rincinoleic acid and glycerin:

Other vegetable oils - such as soy bean oil, peanut oil, and canola oil - contain carbon-carbon double bonds, but no hydroxyl groups. There are several processes used to introduce hydroxyl groups onto the carbon chain of the fatty acids, and most of these involve oxidation of the C-C double bond. Treatment of the vegetal oils with ozone cleaves the double bond, and esters or alcohols can be made, depending on the conditions used to process the ozonolysis product. The example below shows the reaction of triolein with ozone and ethylene glycol.

Air oxidation, (autoxidation), the chemistry involved in the "drying" of drying oils, gives increased molecular weight and introduces hydroxyl groups. The radical reactions involved in autoxidation can produce a complex mixture of crosslinked and oxidized triglycerides. Treatment of vegetable oils with peroxy acids gives epoxides which can be reacted with nucleophiles to give hydroxyl groups. This can be done as a one-step process. Note that in the example shown below only one of the three fatty acid chains is drawn fully, the other part of the molecule is represented by "R1" and the nucleophile is unspecified. Earlier examples also include acid catalyzed ring opening of epoxidized soybean oil to make oleochemical polyols for polyurethane foams and acid catalyzed ring opening of soy fatty acid methyl esters with multifunctional polyols to form new polyols for casting resins.

Triglycerides of unsaturated (containing carbon-carbon double bonds) fatty acids or methyl esters of these acids, can be treated with carbon monoxide and hydrogen in the presence of a metal catalyst to add a -CHO (formyl) groups to the chain (hydroformylation reaction) followed by hydrogenation to give the needed hydroxyl groups. In this case R1 can be the rest of the triglyceride, or a smaller group such as methyl (in which case the substrate would be similar to biodiesel). If R=Me then additional reactions like transesterification are needed to build up a polyol.

Read more about this topic:  Natural Oil Polyols

Famous quotes containing the words sources of, sources, natural and/or oil:

    My profession brought me in contact with various minds. Earnest, serious discussion on the condition of woman enlivened my business room; failures of banks, no dividends from railroads, defalcations of all kinds, public and private, widows and orphans and unmarried women beggared by the dishonesty, or the mismanagement of men, were fruitful sources of conversation; confidence in man as a protector was evidently losing ground, and women were beginning to see that they must protect themselves.
    Harriot K. Hunt (1805–1875)

    On board ship there are many sources of joy of which the land knows nothing. You may flirt and dance at sixty; and if you are awkward in the turn of a valse, you may put it down to the motion of the ship. You need wear no gloves, and may drink your soda-and-brandy without being ashamed of it.
    Anthony Trollope (1815–1882)

    All the moral laws are readily translated into natural philosophy, for often we have only to restore the primitive meaning of the words by which they are expressed, or to attend to their literal instead of their metaphorical sense. They are already supernatural philosophy.
    Henry David Thoreau (1817–1862)

    Mr. Chadband is a large yellow man, with a fat smile, and a general appearance of having a good deal of train oil in his system.
    Charles Dickens (1812–1870)