The Natural Logarithm in Integration
The natural logarithm allows simple integration of functions of the form g(x) = f '(x)/f(x): an antiderivative of g(x) is given by ln(|f(x)|). This is the case because of the chain rule and the following fact:
In other words,
and
Here is an example in the case of g(x) = tan(x):
Letting f(x) = cos(x) and f'(x)= – sin(x):
where C is an arbitrary constant of integration.
The natural logarithm can be integrated using integration by parts:
Read more about this topic: Natural Logarithm
Famous quotes containing the words natural and/or integration:
“After school days are over, the girls ... find no natural connection between their school life and the new one on which they enter, and are apt to be aimless, if not listless, needing external stimulus, and finding it only prepared for them, it may be, in some form of social excitement. ...girls after leaving school need intellectual interests, well regulated and not encroaching on home duties.”
—Ellen Henrietta Swallow Richards (18421911)
“The more specific idea of evolution now reached isa change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.”
—Herbert Spencer (18201903)