Napoleon's problem is a famous compass construction problem. In it, a circle and its center are given. The challenge is to divide the circle into four equal arcs using only a compass. Napoleon was known to be an amateur mathematician but it is not known if he either created or solved the problem. Napoleon's friend the Italian mathematician Lorenzo Mascheroni introduced the limitation of using only a compass (no straight edge) into geometric constructions. But actually, the challenge above is easier than the real Napoleon's problem, consisting in finding the center of a given circle with compass alone. The following sections will describe solutions to both problems, and the proofs that they work.
In 1672, Georg Mohr produced a book, "Euclides Danicus", that predated Mascheroni, though the book was only rediscovered in 1928.
Read more about Napoleon's Problem: Dividing A Given Circle Into Four Equal Arcs Given Its Centre
Famous quotes containing the word problem:
“The problem of the novelist who wishes to write about a mans encounter with God is how he shall make the experiencewhich is both natural and supernaturalunderstandable, and credible, to his reader. In any age this would be a problem, but in our own, it is a well- nigh insurmountable one. Todays audience is one in which religious feeling has become, if not atrophied, at least vaporous and sentimental.”
—Flannery OConnor (19251964)