Myelin Sheath Gap - Overview

Overview

Structure of a typical neuron
Node of Ranvier
Dendrite Soma Axon Nucleus Node of
Ranvier
Axon terminal Schwann cell Myelin sheath

Many vertebrate axons are surrounded by a myelin sheath allowing rapid and efficient saltatory ("jumping") propagation of action potentials. The contacts between neurons and glial cells display a very high level of spatial and temporal organization in myelinated fibers. The myelinating glial cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS), are wrapped around the axon, leaving the axolemma relatively uncovered at regularly spaced nodes of Ranvier.

The internodal glial membranes are fused to form compact myelin, whereas the cytoplasm-filled paranodal loops of myelinating cells are spirally rolled up around the axon at both sides of the nodes. This organization demands a tight developmental control and the formation of a variety of specialized zones of contact between different areas of the myelinating cell membrane. Each node of Ranvier is flanked by paranodal regions where helicoidally wrapped glial loops are attached to the axonal membrane by a septate-like junction. The segment between nodes of Ranvier is termed as the internode, and its outermost part that is in contact with paranodes is referred to as the juxtaparanodal region. The nodes are encapsulated by microvilli steming from the outer aspect of the Schwann cell membrane in the PNS, or by perinodal extensions from astrocytes in the CNS.

Read more about this topic:  Myelin Sheath Gap