Mutually Unbiased Bases - Methods For Finding Mutually Unbiased Bases - Hadamard Matrix Method

Hadamard Matrix Method

Given that one basis in a Hilbert space is the standard basis, then all bases which are unbiased with respect to this basis can be represented by the columns of a complex Hadamard matrix multiplied by a normalization factor. For d = 3 these matrices would have the form

 U = \frac{1}{\sqrt{d}}
\begin{bmatrix} 1 & 1 & 1 \\ e^{i \phi_{10}} & e^{i \phi_{11}} & e^{i \phi_{12}} \\ e^{i \phi_{20}} & e^{i \phi_{21}} & e^{i \phi_{22}}
\end{bmatrix}

The problem of finding a set of k+1 mutually unbiased bases therefore corresponds to finding k mutually unbiased complex Hadamard matrices.

An example of a one parameter family of Hadamard matrices in a 4 dimensional Hilbert space is

 H_4(\phi) = \frac{1}{2}
\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & e^{i\phi} & -1 & -e^{i \phi} \\ 1 & -1 & 1 & -1 \\ 1 & -e^{i\phi} & -1 & e^{i\phi}
\end{bmatrix}

Read more about this topic:  Mutually Unbiased Bases, Methods For Finding Mutually Unbiased Bases

Famous quotes containing the words matrix and/or method:

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)

    Traditional scientific method has always been at the very best 20-20 hindsight. It’s good for seeing where you’ve been. It’s good for testing the truth of what you think you know, but it can’t tell you where you ought to go.
    Robert M. Pirsig (b. 1928)