Multiprotocol Label Switching - MPLS Operation

MPLS Operation

MPLS works by prefixing packets with an MPLS header, containing one or more labels. This is called a label stack. Each label stack entry contains four fields:

  • A 20-bit label value.
  • a 3-bit Traffic Class field for QoS (quality of service) priority (experimental) and ECN (Explicit Congestion Notification).
  • a 1-bit bottom of stack flag. If this is set, it signifies that the current label is the last in the stack.
  • an 8-bit TTL (time to live) field.

These MPLS-labeled packets are switched after a label lookup/switch instead of a lookup into the IP table. As mentioned above, when MPLS was conceived, label lookup and label switching were faster than a routing table or RIB (Routing Information Base) lookup because they could take place directly within the switched fabric and not the CPU.

Routers that perform routing based only on the label are called label switch routers (LSRs). The entry and exit points of an MPLS network are called label edge routers (LERs), which, respectively, push an MPLS label onto an incoming packet and pop it off the outgoing packet. Alternatively, under penultimate hop popping this function may instead be performed by the LSR directly connected to the LER.

Labels are distributed between LERs and LSRs using the Label Distribution Protocol (LDP). LSRs in an MPLS network regularly exchange label and reachability information with each other using standardized procedures in order to build a complete picture of the network they can then use to forward packets. Label-switched paths (LSPs) are established by the network operator for a variety of purposes, such as to create network-based IP virtual private networks or to route traffic along specified paths through the network. In many respects, LSPs are not different from permanent virtual circuits (PVCs) in ATM or Frame Relay networks, except that they are not dependent on a particular layer-2 technology.

In the specific context of an MPLS-based virtual private network (VPN), LERs that function as ingress and/or egress routers to the VPN are often called PE (Provider Edge) routers. Devices that function only as transit routers are similarly called P (Provider) routers. See RFC 4364. The job of a P router is significantly easier than that of a PE router, so they can be less complex and may be more dependable because of this.

When an unlabeled packet enters the ingress router and needs to be passed on to an MPLS tunnel, the router first determines the forwarding equivalence class (FEC) the packet should be in, and then inserts one or more labels in the packet's newly created MPLS header. The packet is then passed on to the next hop router for this tunnel.

When a labeled packet is received by an MPLS router, the topmost label is examined. Based on the contents of the label a swap, push (impose) or pop (dispose) operation can be performed on the packet's label stack. Routers can have prebuilt lookup tables that tell them which kind of operation to do based on the topmost label of the incoming packet so they can process the packet very quickly.

In a swap operation the label is swapped with a new label, and the packet is forwarded along the path associated with the new label.

In a push operation a new label is pushed on top of the existing label, effectively "encapsulating" the packet in another layer of MPLS. This allows hierarchical routing of MPLS packets. Notably, this is used by MPLS VPNs.

In a pop operation the label is removed from the packet, which may reveal an inner label below. This process is called "decapsulation". If the popped label was the last on the label stack, the packet "leaves" the MPLS tunnel. This is usually done by the egress router, but see Penultimate Hop Popping (PHP) below.

During these operations, the contents of the packet below the MPLS Label stack are not examined. Indeed transit routers typically need only to examine the topmost label on the stack. The forwarding of the packet is done based on the contents of the labels, which allows "protocol-independent packet forwarding" that does not need to look at a protocol-dependent routing table and avoids the expensive IP longest prefix match at each hop.

At the egress router, when the last label has been popped, only the payload remains. This can be an IP packet, or any of a number of other kinds of payload packet. The egress router must therefore have routing information for the packet's payload, since it must forward it without the help of label lookup tables. An MPLS transit router has no such requirement.

In some special cases, the last label can also be popped off at the penultimate hop (the hop before the egress router). This is called penultimate hop popping (PHP). This may be interesting in cases where the egress router has lots of packets leaving MPLS tunnels, and thus spends inordinate amounts of CPU time on this. By using PHP, transit routers connected directly to this egress router effectively offload it, by popping the last label themselves.

MPLS can make use of existing ATM network or Frame Relay infrastructure, as its labeled flows can be mapped to ATM or Frame Relay virtual-circuit identifiers, and vice versa.

Read more about this topic:  Multiprotocol Label Switching

Famous quotes containing the word operation:

    It requires a surgical operation to get a joke well into a Scotch understanding. The only idea of wit, or rather that inferior variety of the electric talent which prevails occasionally in the North, and which, under the name of “Wut,” is so infinitely distressing to people of good taste, is laughing immoderately at stated intervals.
    Sydney Smith (1771–1845)