Multiplication Theorem - Polygamma Function

Polygamma Function

The polygamma function is the logarithmic derivative of the gamma function, and thus, the multiplication theorem becomes additive, instead of multiplicative:

k^{m} \psi^{(m-1)}(kz) = \sum_{n=0}^{k-1}
\psi^{(m-1)}\left(z+\frac{n}{k}\right)

for, and, for, one has the digamma function:

k\left = \sum_{n=0}^{k-1}
\psi\left(z+\frac{n}{k}\right).

Read more about this topic:  Multiplication Theorem

Famous quotes containing the word function:

    To look backward for a while is to refresh the eye, to restore it, and to render it the more fit for its prime function of looking forward.
    Margaret Fairless Barber (1869–1901)