Multiple Zeta Function
In mathematics, the multiple zeta functions are generalisations of the Riemann zeta function, defined by
and converge when Re(s1) + ... + Re(si) > i for all i. Like the Riemann zeta function, the multiple zeta functions can be analytically continued to be meromorphic functions (see, for example, Zhao (1999)). When s1, ..., sk are all positive integers (with s1 > 1) these sums are often called multiple zeta values (MZVs) or Euler sums.
The k in the above definition is named the "lengh" of a MZV, and the n = s1 + ... + sk is known as the "weight".
The standard shorthand for writing multiple zeta functions is to place repeating strings of the argument within braces and use a superscript to indicate the number of repetitions. For example,
Read more about Multiple Zeta Function: Two Parameters Case, Three Parameters Case, Euler Reflection Formula, Symmetric Sums in Terms of The Zeta Function, The Sum and Duality Conjectures, Other Results, Mordell–Tornheim Zeta Values, References
Famous quotes containing the words multiple and/or function:
“... the generation of the 20s was truly secular in that it still knew its theology and its varieties of religious experience. We are post-secular, inventing new faiths, without any sense of organizing truths. The truths we accept are so multiple that honesty becomes little more than a strategy by which you manage your tendencies toward duplicity.”
—Ann Douglas (b. 1942)
“Every boy was supposed to come into the world equipped with a father whose prime function was to be our father and show us how to be men. He can escape us, but we can never escape him. Present or absent, dead or alive, real or imagined, our father is the main man in our masculinity.”
—Frank Pittman (20th century)