Multijunction Photovoltaic Cell - Description - Increasing Efficiency

Increasing Efficiency

The catch-22 situation only exists if one considers a material with a single bandgap. If you build a cell with multiple bandgaps, and tune each one to a different wavelength, then it is possible to capture the energy that would otherwise be lost through relaxation, without sacrificing the lower energy photons.

For instance, if one had a cell with two bandgaps in it, one tuned to red light and the other to green, then the extra energy in green, cyan and blue light would be lost only to the bandgap of the green-sensitive material, while the energy of the red, yellow and orange would be lost only to the bandgap of the red-sensitive material. Following analysis similar to those performed for single-bandgap devices, it can be demonstrated that the perfect bandgaps for a two-gap device are at 1.1 eV and 1.8 eV.

Conveniently, light of a particular wavelength does not interact strongly with materials that are not a multiple of that wavelength. This means that you can make a multijunction cell by layering the different materials on top of each other, shortest wavelengths on the "top" and increasing through the body of the cell. As the photons have to pass through the cell to reach the proper layer to be absorbed, transparent conductors need to be used to collect the electrons being generated at each layer.

Read more about this topic:  Multijunction Photovoltaic Cell, Description

Famous quotes containing the words increasing and/or efficiency:

    O, she walked unaware of her own increasing beauty
    That was holding men’s thoughts from market or plough,
    Patrick MacDonogh (1902–1961)

    I’ll take fifty percent efficiency to get one hundred percent loyalty.
    Samuel Goldwyn (1882–1974)