Multi-configurational Self-consistent Field

Multi-configurational Self-consistent Field

Multi-configurational self-consistent field (MCSCF) is a method in quantum chemistry used to generate qualitatively correct reference states of molecules in cases where Hartree–Fock and density functional theory are not adequate (e.g., for molecular ground states which are quasi-degenerate with low lying excited states or in bond breaking situations). It uses a linear combination of configuration state functions (CSF) or configuration determinants to approximate the exact electronic wavefunction of an atom or molecule. In an MCSCF calculation, the set of coefficients of both the CSFs or determinants and the basis functions in the molecular orbitals are varied to obtain the total electronic wavefunction with the lowest possible energy. This method can be considered a combination between configuration interaction (where the molecular orbitals are not varied but the expansion of the wave function) and Hartree–Fock (where there is only one determinant but the molecular orbitals are varied).

MCSCF wave functions are often used as reference states for Multireference configuration interaction (MRCI) or multi-reference perturbation theories like complete active space perturbation theory (CASPT2). These methods can deal with extremely complex chemical situations and, if computing power permits, may be used to reliably calculate molecular ground- and excited states if all other methods fail.

Read more about Multi-configurational Self-consistent Field:  Introduction, Complete Active Space SCF, Restricted Active Space SCF

Famous quotes containing the word field:

    Swift blazing flag of the regiment,
    Eagle with crest of red and gold,
    These men were born to drill and die.
    Point for them the virtue of slaughter,
    Make plain to them the excellence of killing
    And a field where a thousand corpses lie.
    Stephen Crane (1871–1900)