Formal Definition
Formally, a deterministic Muller-automaton is a tuple A = (Q,Σ,δ,q0,F) that consists of the following information:
- Q is a finite set. The elements of Q are called the states of Q.
- Σ is a finite set called the alphabet of A.
- δ: Q × Σ → Q is a function, called the transition function of A.
- q0 is an element of Q, called the initial state.
- F is a set of sets of states. Formally, F ⊆ P(Q) where P(Q) is powerset of Q. F defines the acceptance condition. A accepts exactly those runs in which the set of infinitely often occurring states is an element of F
In a non-deterministic Muller automaton, the transition function δ is replaced with a transition relation Δ that returns a set of states and initial state is q0 is replaced by a set of initial states Q0. Generally, Muller automaton refers to non-deterministic Muller automaton.
For more comprehensive formalism look at ω-automaton.
Read more about this topic: Muller Automaton
Famous quotes containing the words formal and/or definition:
“It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between ideas and things, both of which he assumes as given; he need not inquire whether either sphere is real or whether, in the final analysis, reality consists in their interaction.”
—Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)