Motor Cognition - Perception-action Coupling

Perception-action Coupling

The idea of a continuity between the different aspects of motor cognition is not new. In fact, this idea can be traced to the work of the American psychologist William James and more recently, American neurophysiologist and Nobel prize winner Roger Sperry. Sperry argued that the perception–action cycle is the fundamental logic of the nervous system. Perception and action processes are functionally intertwined: perception is a means to action and action is a means to perception. Indeed, the vertebrate brain has evolved for governing motor activity with the basic function to transform sensory patterns into patterns of motor coordination.

More recently, there is growing empirical evidence from cognitive psychology, developmental psychology, cognitive neuroscience, cognitive science, as well as social psychology which demonstrates that perception and action share common computational codes and underlying neural architectures. This evidence has been marshaled in the "common coding theory" put forward by Wolfgang Prinz and his colleagues at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany. This theory claims parity between perception and action. Its core assumption is that actions are coded in terms of the perceivable effects (i.e., the distal perceptual events) they should generate. Performing a movement leaves behind a bidirectional association between the motor pattern it has generated by and the sensory effects that it produces. Such an association can then be used backwards to retrieve a movement by anticipating its effects. These perception/action codes are also accessible during action observation.Other authors suggest a new notion of the phylogenetic and ontogenetic origin of action understanding that utilizes the motor system; motor cognition hypothesis. This states that motor cognition provides both human and nonhuman primates with a direct, prereflexive understanding of biological actions that match their own action catalog.

The discovery of mirror neurons in the ventral premotor and parietal cortices of the macaque monkey that fire both when it carries out a goal-directed action and when it observes the same action performed by another individual provides neurophysiological evidence for a direct matching between action perception and action production. An example of such coupling is the ease with which people can engage in speech repetition when asked to shadow words heard in earphones.

In humans, common neural activation during action observation and execution has been well documented. A variety of functional neuroimaging studies, using functional magnetic resonance imaging (fMRI), positron emission tomography, and magnetoencephalography have demonstrated that a motor resonance mechanism in the premotor and posterior parietal cortices occurs when participants observe or produce goal directed actions. Such a motor resonance system seems to be hard wired, or at least functional very early in life.

Read more about this topic:  Motor Cognition

Famous quotes containing the word coupling:

    The time of the seasons and the constellations
    The time of milking and the time of harvest
    The time of the coupling of man and woman
    And that of beasts. Feet rising and falling.
    Eating and drinking. Dung and death.
    —T.S. (Thomas Stearns)