Motion Planning - Concepts - Configuration Space

Configuration Space

A configuration describes the pose of the robot, and the configuration space C is the set of all possible configurations. For example:

  • If the robot is a single point (zero-sized) translating in a 2-dimensional plane (the workspace), C is a plane, and a configuration can be represented using two parameters (x, y).
  • If the robot is a 2D shape that can translate and rotate, the workspace is still 2-dimensional. However, C is the special Euclidean group SE(2) = R2 SO(2) (where SO(2) is the special orthogonal group of 2D rotations), and a configuration can be represented using 3 parameters (x, y, θ).
  • If the robot is solid 3D shape that can translate and rotate, the workspace is 3-dimensional, but C is the special Euclidean group SE(3) = R3 SO(3), and a configuration requires 6 parameters: (x, y, z) for translation, and Euler angles (α, β, γ).
  • If the robot is a fixed-base manipulator with N revolute joints (and no closed-loops), C is N-dimensional.

Read more about this topic:  Motion Planning, Concepts

Famous quotes containing the word space:

    In bourgeois society, the French and the industrial revolution transformed the authorization of political space. The political revolution put an end to the formalized hierarchy of the ancien regimé.... Concurrently, the industrial revolution subverted the social hierarchy upon which the old political space was based. It transformed the experience of society from one of vertical hierarchy to one of horizontal class stratification.
    Donald M. Lowe, U.S. historian, educator. History of Bourgeois Perception, ch. 4, University of Chicago Press (1982)