Montgomery Reduction - Formal Statement

Formal Statement

Let N be a positive integer, R and T be integers such that, and, and let be the multiplicative inverse modulo N of R. The Montgomery reduction of T modulo N with respect to R is defined as the value

A systematic interpretation of Montgomery reduction and the definition of Montgomery multiplication operation is based on the 2nd generalized division algorithm; see Euclidean division#Generalized_division_algorithms.

The algorithm used to calculate this reduction is much more efficient than the classical method of taking a product over the integers and reducing the result modulo N.

Read more about this topic:  Montgomery Reduction

Famous quotes containing the words formal and/or statement:

    Then the justice,
    In fair round belly with good capon lined,
    With eyes severe and beard of formal cut,
    Full of wise saws and modern instances;
    And so he plays his part.
    William Shakespeare (1564–1616)

    Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasn’t written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.
    Robert Benchley (1889–1945)