The Electromagnetic Field
With respect to our frame, the electromagnetic field obtained from the potential given above is
This electromagnetic field is a source-free solution of the Maxwell field equations on the particular curved spacetime which is defined by the metric tensor above. It is a null solution, and it represents a transverse sinusoidal electromagnetic plane wave with amplitude and frequency, traveling in the direction. When we
- compute the stress-energy tensor for the given electromagnetic field,
- compute the Einstein tensor for the given metric tensor,
we find that the Einstein field equation is satisfied. This is what we mean by saying that we have an exact electrovacuum solution.
In terms of our frame, the stress-energy tensor turns out to be
Notice that this is exactly the same expression that we would find in classical electromagnetism (where we neglect the gravitational effects of the electromagnetic field energy) for the null field given above; the only difference is that now our frame is a anholonomic (orthonormal) basis on a curved spacetime, rather than a coordinate basis in flat spacetime. (See frame fields.)
Read more about this topic: Monochromatic Electromagnetic Plane Wave
Famous quotes containing the word field:
“The head must bow, and the back will have to bend,
Wherever the darkey may go;
A few more days, and the trouble all will end,
In the field where the sugar-canes grow.
A few more days for to tote the weary load,
No matter, t will never be light;
A few more days till we totter on the road:
Then my old Kentucky home, good-night!”
—Stephen Collins Foster (18261884)