Molecular Engineering - in Two Dimensions

In Two Dimensions

The study and fabrication of molecular-precise architectures confined at interfaces (i.e., molecular thick architectures) has rapidly emerged as a scientific approach towards supramolecular and molecular engineering. The fabrication step of such architectures (often referred as molecular self-assembly depending on the deposition process and interactions involved) relies in the use of solid interfaces to create adsorbed monolayers. Just recently, have such two-dimensional (or "on-surface") chemistry and physics yielded large-scale molecular-precise structures of technological relevance. Albeit spatial control and working devices remain to be evidenced in the field, predictive (computational) models as well as advances in the thermo- and photo- chemical physics of monolayers are expected to bring the field to technology within the next 10 years.

It is worth noting that the ansatz of a molecular assembler and/or STM manipulation experiments aim at achieving atom-by-atom fabrication, i.e. fabrication with resolutions of ca. 3Åx3Åx3Å. On the other hand (2D) on-surface molecular engineering will be intrinsically limted to the size of the molecules which are capable of encoding complex physico-chemical information. This might be considered a technique having a maximum resolution of ca. 20Åx20Åx3Å. In contrast, state-of-the art lithography methods, a form of less-precise molecular engineering, is expected to achieve a resolution of 50Åx50Åx50Å by 2016.

Read more about this topic:  Molecular Engineering

Famous quotes containing the word dimensions:

    Is it true or false that Belfast is north of London? That the galaxy is the shape of a fried egg? That Beethoven was a drunkard? That Wellington won the battle of Waterloo? There are various degrees and dimensions of success in making statements: the statements fit the facts always more or less loosely, in different ways on different occasions for different intents and purposes.
    —J.L. (John Langshaw)