Molecular Electronic Transition - Organic Molecules and Other Molecules

Organic Molecules and Other Molecules

The electronic transitions in organic compounds and some other compounds can be determined by ultraviolet-visible spectroscopy, provided that transitions in the ultraviolet (UV) or visible range of the electromagnetic spectrum exist for this compound. Electrons occupying a HOMO of a sigma bond can get excited to the LUMO of that bond. This process is denoted as a σ → σ* transition. Likewise promotion of an electron from a π-bonding orbital to an antibonding π orbital* is denoted as a π → π* transition. Auxochromes with free electron pairs denoted as n have their own transitions, as do aromatic pi bond transitions. Sections of molecules which can undergo such detectable electron transitions can be referred to as chromophores since such transitions absorb electromagnetic radiation (light), which may be hypothetically perceived as color somewhere in the electromagnetic spectrum. The following molecular electronic transitions exist:

σ → σ*
π → π*
n → σ*
n → π*
aromatic π → aromatic π*

In addition to these assignments, electronic transitions also have so-called bands associated with them. The following bands are defined: the R-band from the German radikalartig or radical-like, the K-band from the German Konjugierte or conjugated, B-band from benzoic and the E-band from ethylenic (system devised by A. Burawoy in 1930). For example, the absorption spectrum for ethane shows a σ → σ* transition at 135 nm and that of water a n → σ* transition at 167 nm with an extinction coefficient of 7,000. Benzene has three aromatic π → π* transitions; two E-bands at 180 and 200 nm and one B-band at 255 nm with extinction coefficients respectively 60,000, 8,000 and 215. These absorptions are not narrow bands but are generally broad because the electronic transitions are superimposed on the other molecular energy states.

Read more about this topic:  Molecular Electronic Transition

Famous quotes containing the words organic molecules and/or organic:

    The following general definition of an animal: a system of different organic molecules that have combined with one another, under the impulsion of a sensation similar to an obtuse and muffled sense of touch given to them by the creator of matter as a whole, until each one of them has found the most suitable position for its shape and comfort.
    Denis Diderot (1713–1784)

    A special feature of the structure of our book is the monstrous but perfectly organic part that eavesdropping plays in it.
    Vladimir Nabokov (1899–1977)