Definition
Let K be a global field with ring of integers R. A modulus is a formal product
where p runs over all places of K, finite or infinite, the exponents ν(p) are zero except for finitely many p. If K is a number field, ν(p) = 0 or 1 for real places and ν(p) = 0 for complex places. If K is a function field, ν(p) = 0 for all infinite places.
In the function field case, a modulus is the same thing as an effective divisor, and in the number field case, a modulus can be considered as special form of Arakelov divisor.
The notion of congruence can be extended to the setting of moduli. If a and b are elements of K×, the definition of a ≡∗b (mod pν) depends on what type of prime p is:
- if it is finite, then
-
- where ordp is the normalized valuation associated to p;
- if it is a real place (of a number field) and ν = 1, then
-
- under the real embedding associated to p.
- if it is any other infinite place, there is no condition.
Then, given a modulus m, a ≡∗b (mod m) if a ≡∗b (mod pν(p)) for all p such that ν(p) > 0.
Read more about this topic: Modulus (algebraic Number Theory)
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)