Modelling Biological Systems - Overview

Overview

It is understood that an unexpected emergent property of a complex system is a result of the interplay of the cause-and-effect among simpler, integrated parts (see biological organisation). Biological systems manifest many important examples of emergent properties in the complex interplay of components. Traditional study of biological systems requires reductive methods in which quantities of data are gathered by category, such as concentration over time in response to a certain stimulus. Computers are critical to analysis and modelling of these data. The goal is to create accurate real-time models of a system's response to environmental and internal stimuli, such as a model of a cancer cell in order to find weaknesses in its signalling pathways, or modelling of ion channel mutations to see effects on cardiomyocytes and in turn, the function of a beating heart.

A monograph on this topic summarizes an extensive amount of published research in this area up to 1987, including subsections in the following areas: computer modelling in biology and medicine, arterial system models, neuron models, biochemical and oscillation networks, quantum automata, quantum computers in molecular biology and genetics, cancer modelling, neural nets, genetic networks, abstract relational biology, metabolic-replication systems, category theory applications in biology and medicine, automata theory, cellular automata, tessallation models and complete self-reproduction, chaotic systems in organisms, relational biology and organismic theories. This published report also includes 390 references to peer-reviewed articles by a large number of authors.

Read more about this topic:  Modelling Biological Systems