Physics and Chemistry
A heterogeneous mixture is a mixture of two or more chemical substances (elements or compounds}. Examples are: mixtures of sand and water or sand and iron filings, a conglomerate rock, water and oil, a salad, trail mix, and concrete (not cement). A mixture of powdered silver metal and powdered gold metal would represent a heterogeneous mixture of two elements.
Making a distinction between homogeneous and heterogeneous mixtures is a matter of the scale of sampling. On a coarse enough scale, any mixture can be said to be homogeneous, if you'll allow the entire article to count as a "sample" of it. On a fine enough scale, any mixture can be said to be heterogeneous, because a sample could be as small as a single molecule. In practical terms, if the property of interest of the mixture is the same regardless of which sample of it is taken for the examination used, the mixture is homogeneous.
Gy's sampling theory quantitavely defines the heterogeneity of a particle as:
where, and are respectively: the heterogeneity of the th particle of the population, the mass concentration of the property of interest in the th particle of the population, the mass concentration of the property of interest in the population, the mass of the th particle in the population, and the average mass of a particle in the population.
During sampling of heterogeneous mixtures of particles, the variance of the sampling error is generally non-zero.
Pierre Gy derived, from the Poisson sampling model, the following formula for the variance of the sampling error in the mass concentration in a sample:
in which V is the variance of the sampling error, N is the number of particles in the population (before the sample was taken), q i is the probability of including the ith particle of the population in the sample (i.e. the first-order inclusion probability of the ith particle), m i is the mass of the ith particle of the population and a i is the mass concentration of the property of interest in the ith particle of the population.
The above equation for the variance of the sampling error is an approximation based on a linearization of the mass concentration in a sample.
In the theory of Gy, correct sampling is defined as a sampling scenario in which all particles have the same probability of being included in the sample. This implies that q i no longer depends on i, and can therefore be replaced by the symbol q. Gy's equation for the variance of the sampling error becomes:
where abatch is that concentration of the property of interest in the population from which the sample is to be drawn and Mbatch is the mass of the population from which the sample is to be drawn.
Read more about this topic: Mixture
Famous quotes containing the words physics and/or chemistry:
“He who is conversant with the supernal powers will not worship these inferior deities of the wind, waves, tide, and sunshine. But we would not disparage the importance of such calculations as we have described. They are truths in physics because they are true in ethics.”
—Henry David Thoreau (18171862)
“If thought makes free, so does the moral sentiment. The mixtures of spiritual chemistry refuse to be analyzed.”
—Ralph Waldo Emerson (18031882)