Minimum Distance Estimation - Definition

Definition

Let be an independent and identically distributed (iid) random sample from a population with distribution and .

Let be the empirical distribution function based on the sample.

Let be an estimator for . Then is an estimator for .

Let be a functional returning some measure of "distance" between the two arguments. The functional is also called the criterion function.

If there exists a such that, then is called the minimum distance estimate of .

(Drossos & Philippou 1980, p. 121)

Read more about this topic:  Minimum Distance Estimation

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)