# Million - Selected 7-digit Numbers (1,000,000 – 9,999,999)

Selected 7-digit Numbers (1,000,000 – 9,999,999)

• 1,000,003 – Smallest 7-digit prime number
• 1,046,527 – Carol number
• 1,048,576 = 220 (power of two), 2,116-gonal number, an 8,740-gonal number and a 174,764-gonal number, the number of bytes in a mebibyte, the number of kibibytes in a gibibyte, and so on. Also the most rows that Calc (OpenOffice.org Calc 3.3) can accept in a single worksheet.
• 1,048,976 – Leyland number
• 1,050,623 – Kynea number
• 1,058,576 – Leyland number
• 1,084,051 – Keith number
• 1,089,270harmonic divisor number
• 1,136,689 – Pell number, Markov number
• 1,234,567 – Smarandache consecutive number (base 10 digits are in numerical order)
• 1,278,818 – Markov number
• 1,346,269Fibonacci number, Markov number
• 1,413,721 – square triangular number
• 1,421,280 – harmonic divisor number
• 1,441,440 – colossally abundant number
• 1,441,889 – Markov number
• 1,539,720 – harmonic divisor number
• 1,563,372 – Wedderburn-Etherington number
• 1,594,323 = 313
• 1,596,520 – Leyland number
• 1,647,086 – Leyland number
• 1,679,616 = 68
• 1,686,049 – Markov number
• 1,741,725 – equal to the sum of the seventh power of its digits
• 1,771,561 = 116 = 1213 = 13312, also, Commander Spock's estimate for the tribble population in the Star Trek episode "The Trouble With Tribbles"
• 1,941,760 – Leyland number
• 1,953,125 = 59
• 2,012,174 – Leyland number
• 2,012,674 - Markov number
• 2,097,152 = 221, power of two
• 2,097,593 - prime Leyland number
• 2,124,679 - Wolstenholme prime
• 2,178,309 - Fibonacci number
• 2,356,779 - Motzkin number
• 2,423,525 - Markov number
• 2,674,440 - Catalan number
• 2,744,210 - Pell number
• 2,796,203 - Wagstaff prime
• 2,922,509 - Markov number
• 3,263,442 - product of the first five terms of Sylvester's sequence
• 3,263,443 - sixth term of Sylvester's sequence
• 3,276,509 - Markov number
• 3,301,819 - alternating factorial
• 3,524,578 - Fibonacci number, Markov number
• 3,626,149 - Wedderburn-Etherington number
• 3,628,800 = 10! (factorial of ten)
• 4,037,913 - sum of the first ten factorials
• 4,190,207 - Carol number
• 4,194,304 = 222, power of two
• 4,194,788 - Leyland number
• 4,198,399 - Kynea number
• 4,208,945 - Leyland number
• 4,210,818 - equal to the sum of the seventh powers of its digits
• 4,213,597 - Bell number
• 4,400,489 - Markov number
• 4,782,969 = 314
• 4,785,713 - Leyland number
• 4,826,809 = 136
• 5,134,240 - the largest number that cannot be expressed as the sum of distinct fourth powers
• 5,702,887 - Fibonacci number
• 5,764,801 = 78
• 5,882,353 = 5882 + 23532
• 6,536,382 - Motzkin number
• 6,625,109 - Pell number, Markov number
• 7,453,378 - Markov number
• 7,652,413 - Largest n-digit pandigital prime
• 7,861,953 - Leyland number
• 7,913,837 - Keith number
• 8,000,000 - Used to represent infinity in Japanese mythology
• 8,388,608 = 223, power of two
• 8,389,137 - Leyland number
• 8,399,329 - Markov number
• 8,436,379 - Wedderburn-Etherington number
• 8,675,309 - A hit song for Tommy Tutone (also a twin prime)
• 8,675,311 - A twin prime
• 8,946,176 - self-descriptive number in base 8
• 9,227,465 - Fibonacci number, Markov number
• 9,369,319 - Newman–Shanks–Williams prime
• 9,647,009 - Markov number
• 9,694,845 - Catalan number
• 9,765,625 = 510
• 9,800,817 - equal to the sum of the seventh powers of its digits
• 9,865,625 - Leyland number
• 9,926,315 - equal to the sum of the seventh powers of its digits
• 9,999,991 - Largest 7-digit prime number