Military Simulation - The Simulation Spectrum

The Simulation Spectrum

The term Military Simulation can be used to cover a wide spectrum of activities, ranging from full scale field exercises, to abstract computerized models that can proceed with little or no human involvement such as the Rand Strategy Assessment Center (RSAC).

As a general scientific principle, the most reliable data is produced by actual observation and the most reliable theories are based on it. This is also true in military analysis, where analysts look towards live field exercises and trials as providing data that is likely to be realistic (depending on the realism of the exercise) and verifiable (it has been gathered by actual observation). It can be readily discovered, for example, how long it takes to construct a pontoon bridge under given conditions with given manpower, and this data can then be used to provide norms for expected performance under similar conditions in the future, or to refine the bridge-building process. It is true that any form of training can be regarded as a 'simulation' in the strictest sense of the word (inasmuch as it simulates an operational environment); however, many if not most exercises are carried out not to test new ideas or models, but to provide the participants with the skills to operate within existing ones.

Full-scale military exercises, or even smaller scale ones, are not always feasible or even desirable. Availability of resources, including money, is a significant factor — it is an expensive endeavor to release men and materiel from any standing commitments, transport them to a suitable location, and then cover additional expenses such as Petroleum Oil Lubricants (POL) usage, equipment maintenance, supplies and consumables replenishment and other items. In addition, certain warfare models are not amenable to verification using this realistic method. It would, for example, be impossible to accurately test an attrition scenario by killing one's own troops.

Moving away from the Field Exercise, it is often more convenient to test a theory by reducing the level of personnel involvement. Map exercises can be conducted involving senior officers and planners, but without the need to physically move around any troops. These retain some human input, and thus can still reflect to some extent the human imponderables that make warfare so challenging to model, with the advantage of reduced costs and increased accessibility. A map exercise can also be conducted with far less forward planning than a full scale deployment, making it an attractive option for more minor simulations that would not merit anything larger, as well as for very major operations where cost, or secrecy, is an issue. (This was true in the planning of .)

Increasing the level of abstraction still further, simulation moves towards an environment readily recognised by civilian wargamers. This type of simulation can be manual, implying no (or very little) computer involvement, computer-assisted, or fully computerised.

Manual simulations have probably been in use in some form since mankind first went to war. Chess can be regarded as a form of military simulation (although its precise origins are debated). In more recent times, the forerunner of modern simulations was the Prussian game Kriegsspiel, which appeared around 1811 and is sometimes credited with the Prussian victory in the Franco-Prussian War. It was distributed to each Prussian regiment and they were ordered to play it regularly, prompting a visiting German officer to declare in 1824, "It's not a game at all! It's training for war!" Eventually so many rules sprang up, as each regiment improvised their own variations, two versions came into use. One, known as "rigid Kriegsspiel", was played by strict adherence to the lengthy rule book. The other, "free Kriegsspiel", was governed by the decisions of human umpires. Each version had its advantages and disadvantages: rigid Kriegsspiel contained rules covering most situations, and the rules were derived from historical battles where those same situations had occurred, making the simulation verifiable and rooted in observable data, which some later American models discarded. However, its prescriptive nature acted against any impulse of the participants towards free and creative thinking. Conversely, free Kriegsspiel could encourage this type of thinking, as its rules were open to interpretation by umpires and could be adapted during operation. This very interpretation, though, tended to negate the verifiable nature of the simulation, as different umpires might well adjudge the same situation in different ways, especially where there was a lack of historical precedent. In addition, it allowed umpires to weight the outcome, consciously or otherwise.

The above arguments are still cogent in the modern, computer-heavy military simulation environment. There remains a recognised place for umpires as arbiters of a simulation, hence the persistence of manual simulations in war colleges throughout the world. Both computer-assisted and entirely computerised simulations are common as well, with each being used as required by circumstances. The Rand Corporation is one of the best known designers of Military Simulations for the US Government and Air Force, and one of the pioneers of the Political-Military simulation. Their SAFE (Strategic And Force Evaluation) simulation is an example of a manual simulation, with one or more teams of up to ten participants being sequestered in separate rooms and their moves being overseen by an independent director and his staff. Such simulations may be conducted over a few days (thus requiring commitment from the participants): an initial scenario (for example, a conflict breaking out in the Persian Gulf) is presented to the players with appropriate historical, political and military background information. They then have a set amount of time to discuss and formulate a strategy, with input from the directors/umpires (often called Control) as required. Where more than one team is participating, teams may be divided on partisan lines — traditionally Blue and Red are used as designations, with Blue representing the 'home' nation and Red the opposition. In this case, the teams will work against each other, their moves and counter-moves being relayed to their opponents by Control, who will also adjudicate on the results of such moves. At set intervals, Control will declare a change in the scenario, usually of a period of days or weeks, and present the evolving situation to the teams based on their reading of how it might develop as a result of the moves made. For example, Blue Team might decide to respond to the Gulf conflict by moving a carrier battle group into the area whilst simultaneously using diplomatic channels to avert hostilities. Red Team, on the other hand, might decide to offer military aid to one side or another, perhaps seeing an opportunity to gain influence in the region and counter Blue's initiatives. At this point Control could declare a week has now passed, and present an updated scenario to the players: possibly the situation has deteriorated further and Blue must now decide if they wish to pursue the military option, or alternatively tensions might have eased and the onus now lies on Red as to whether to escalate by providing more direct aid to their clients.

Computer-assisted simulations are really just a development of the manual simulation, and again there are different variants on the theme. Sometimes the computer assistance will be nothing more than a database to help umpires keep track of information during a manual simulation. At other times one or other of the teams might be replaced by a computer-simulated opponent (known as an agent or automaton). This can reduce the umpires' role to interpreter of the data produced by the agent, or obviate the need for an umpire altogether. Most commercial wargames designed to run on computers (such as Blitzkrieg, the Total War series and even the Civilization games) fall into this category.

Where both human teams are replaced by agents, the simulation can be fully computerised and, with minimal supervision, left to run by itself. The main advantage of this is the ready accessibility of the simulation — beyond the time required to program and update the computer models, no special requirements are necessary. A fully computerised simulation can be run at virtually any time and in almost any location, the only equipment needed being a laptop computer. There is no need to juggle schedules to suit busy participants, acquire suitable facilities and arrange for their use, or obtain security clearances. An additional important advantage is its ability to perform many hundreds or even thousands of iterations in the time that it would take a manual simulation to run once. This means statistical information can be gleaned from such a model; outcomes can be quoted in terms of probabilities, and plans developed accordingly.

Removing the human element entirely means the results of the simulation are only as good as the model itself. Validation thus becomes extremely significant — data must be correct, and must be handled correctly by the model: the modeller's assumptions ("rules") must adequately reflect reality, or the results will be nonsense. Various mathematical formulae have been devised over the years to attempt to predict everything from the effect of casualties on morale to the speed of movement of an army in difficult terrain. One of the best known is the Lanchester Square Law formulated by the British engineer Frederick Lanchester in 1914. He expressed the fighting strength of a (then) modern force as proportional to the square of its numerical strength multiplied by the fighting value of its individual units. The Lanchester Law is often known as the attrition model, as it can be applied to show the balance between opposing forces as one side or the other loses numerical strength.

Read more about this topic:  Military Simulation

Famous quotes containing the word simulation:

    Life, as the most ancient of all metaphors insists, is a journey; and the travel book, in its deceptive simulation of the journey’s fits and starts, rehearses life’s own fragmentation. More even than the novel, it embraces the contingency of things.
    Jonathan Raban (b. 1942)