MIG29 - Variants

Variants

There are currently several upgrade programmes conducted by the Russian Air Force for MiG-29 fighters which envisage: upgrading of the avionics suite to comply with NATO / ICAO (www.icao.int) standards, extension of the aircraft service life to 4,000 flight hours (40 years), upgrading combat capabilities and reliability, safety enhancements. In 2005 the Russian Aircraft Corporation “MiG” started production of new unified family of multirole fighters of the 4++ generation (aircraft-carrier based MiG-29K, front-line MiG-29M and MiG-35 fighters).

MiG-29 (Product 9.12)
Initial production version; entered service in 1983. NATO reporting code is "Fulcrum-A".
MiG-29B-12 (Product 9.12A)
Downgraded export version for Warsaw Pact (9.12A) and non-Warsaw Pact nations (9.12B). Lacked a nuclear weapon delivery system and possessed downgraded radar, ECM and IFF. NATO reporting code is "Fulcrum-A".
MiG-29UB-12 (Product 9.51)
Twin seat training model. Infra-red sensor mounted only, no radar. NATO reporting code is "Fulcrum-B".
MiG-29S
The MiG-29S is similar in external appearance to older MiG-29B airframes, except for the dorsal hump behind the cockpit canopy. Differences start with the improvements in the flight control system. Four new computers provide better stability augmentation and controllability with an increase of 2° in angle of attack (AoA). Its improved mechanical-hydraulic flight control system allows for greater control surface deflections. The MiG-29S's dorsal hump, earning it the nickname "Fatback" in service, was originally believed to be for additional fuel, but in fact, most of its volume is used for the new L-203BE Gardenyia-1 ECM system.
The MiG-29S can carry 1,150 liter (304 US gallon, 2,000 lb) drop tanks under each wing and a centerline tank. Inboard underwing hardpoints are upgraded to allow for a tandem pylon arrangement for a larger payload of 4,000 kg (8,820 lb). Overall maximum gross weight has been raised to 20,000 kg (44,000 lb). The GSh-30-1 cannon had its expended round ejector port modified to allow for firing while the centerline tank is still attached. Improvements also allow for new longer-range air-to-air missiles like the R-27E (AA-10 "Alamo") and R-77 (AA-12 "Adder").
Initially, the avionics of the MiG-29S only added a new IRST sighting system combined with a better imbedded training system that allowed for IR and radar target simulation. However, the final MiG-29S improvement kit also provides for the Phazotron N019M radar and more built-in test equipment (BITE) (especially for the radar) to reduce dependence on ground support equipment; MiG MAPO calls this model the MiG-29SD. Revised weapon system algorithms in the MiG-29S's software, combined with an increase in processing capacity, allows for the tracking of up to 10 targets and the simultaneous engagement of two with the R-77 missile.
The MiG-29S also has a limited ground-attack capability with unguided munitions, but in order to transform the MiG-29 into a true multirole fighter, MAPO designed the MiG-29SM variant with the improved avionics necessary to carry and employ precision-guided weapons. The "SE/SD/SM" improvements in the MiG-29S, combined with the development money made available for the naval MiG-29K, gave MAPO the incentive to forge ahead with the multirole MiG-29M "Super Fulcrum".
Flight performance of the MiG-29S is but slightly reduced due to the additional weight of the additional fuel and avionics. Only 48 MiG-29S new-built airframes were produced for the Russian VVS before funding was cut. Of this number, it is unknown how many are the standard air-superiority "S" version and how many are the multirole "SM" version. NATO reporting code is "Fulcrum-C".
MiG-29S-13 (Product 9.13)
MiG-29 variant similar to the 9.12, but with an enlarged fuselage spine containing additional fuel and a Gardeniya active jammer. Product 9.13S is also version with the same airframe as the 9.13, but with an increased external weapons load of 4,000 kg, and provision for two underwing fuel tanks. Radar upgraded to N019ME, providing an ability to track 10 targets and engage two simultaneously. Compatible with the Vympel R-77 (AA-12 "Adder") air-to-air missile (similar to the AIM-120 AMRAAM). NATO reporting code is "Fulcrum-C".
MiG-29SM (Product 9.13M)
Similar to the 9.13, but with the ability to carry guided air-to-surface missiles and TV- and laser-guided bombs. NATO reporting code is "Fulcrum-C".
MiG-29G/MiG-29GT
It was an upgrade standard for the German Air Force's MiG-29 / 29UB, inherited from the former East Germany to the NATO standards. Works was done by MiG Aircraft Product Support GmbH (MAPS), a joint venture company form between MiG Moscow Aviation Production Association and DaimlerChrysler Aerospace in 1993.
MiG-29AS/MiG-29UBS (MiG-29SD)
Slovak Air Force performed an upgrade on their MiG-29/-29UB for NATO compatibility. Work is done by RAC MiG and Western firms, starting from 2005. The aircraft now has navigation and communications systems from Rockwell Collins, an IFF system from BAE Systems, new glass cockpit features multi-function LC displays and digital processors and also fitted to be integrate with Western equipment in the future. However, the armaments of the aircraft remain unchanged. 12 out of 21 of the entire MiG-29 fleet were upgraded and had been delivered as of late February, 2008.
MiG-29 Sniper
Upgrade planned for Romanian Air Force, by Israeli firms. First flight occurred on 5 May 2000. The program was halted along with the retiring of Romanian MiG-29s in 2003. The latter occurred because of high maintenance costs, which led to the Romanian Government's decision to halt the MiG-29 program and further invest in the MiG-21 LanceR program.
MiG-29M / MiG-33 (Product 9.15)
Advanced multirole variant, with a redesigned airframe, mechanical flight controls replaced by a fly-by-wire system and powered by enhanced RD-33 ser.3M engines. NATO reporting code is "Fulcrum-E".
MiG-29UBM (Product 9.61)
Two-seat training variant of the MiG-29M. Never built. Effectively continued under the designation 'MiG-29M2'.
MiG-29K (Product 9.31)
Naval variant based on MiG-29M, the letter "K" stands for "Korabelnogo bazirovaniya" (Deck-based ), with equipment such as folding wings, arrestor gear, and reinforced landing gear. Originally intended for the Admiral Kuznetsov class aircraft carriers, had even received series production approval from Russian Ministry of Defence but was later grounded in 1992 due to shift in military doctrine and state financial difficulty. MiG Corporation restarted the program in 1999 and made vital improvement to the previous design. On 20 January 2004, Indian Navy signed a contract of 12 single-seat MiG-29K and four two-seat MiG-29KUB. Modifications were made for Indian Navy requirement, now standard for all current production. Current production MiG-29K and MiG-29KUB also share a two-seater size canopy. The MiG-29K has radar absorbing coatings to reduce radar signature. Cockpit displays consist of wide HUD and three (seven on MiG-29KUB) colour LCD MFDs with a Topsight E helmet-mounted targeting system. It has a full range of weapons compatible with the MiG-29M and MiG-29SMT. NATO reporting code is "Fulcrum-D".
MiG-29KUB (Product 9.47)
Identical characteristic to the MiG-29K but with tandem twin seat configuration. The design is to serve as trainer for MiG-29K pilot and is full combat capable. The first MiG-29KUB developed for the Indian Navy made its maiden flight at the Russian Zhukovsky aircraft test centre on 22 January 2007. NATO reporting code is "Fulcrum-D".
MiG-29SMT (Product 9.17)
The MiG-29SMT is an upgrade package of the first-generation MiG-29s (9.12 to 9.13) containing many enhancements intended for the MiG-29M. Additional fuel tanks in a further enlarged spine provide a maximum flight range of 2,100 km (on internal fuel). The cockpit has an enhanced HOTAS design, two 152 × 203 mm (6 × 8 inch) colour liquid crystal MFDs and two smaller monochrome LCDs. The upgraded Zhuk-ME radar provides similar features to the MiG-29M. The power plant are upgraded RD-33 ser.3 engines with afterburning thrust rated the same at 8,300 kgf (81.4 kN) each. The weapons load was increased to 4,500 kg on six underwing and one ventral hardpoints, with similar weapon choices as for the MiG-29M variant. The upgraded aircraft has also a painted path for non-Russian origin avionics and weapons.
MiG-29BM
"The MiG-29BM (probably Belorussian Modernised, possibly Bolyshaya Modernizaciya - large modernization) is an upgrade to the MiG-29 conducted by the ARZ-558 aircraft repair plant in Baranovichi, Belarus...The MiG-29BM is a strike variant of the MiG-29 pure fighter, the Belarussian counterpart to the Russian MiG-29SMT." It includes improvements to weapons, radar, as well as adding non-retractable air-air refueling ability.
MiG-29UBT (Product 9.51T)
SMT standard upgrade for the MiG-29UB. Namely users, Algeria and Yemen.
MiG-29UPG
The Indian UPG version is similar to the SMT variant but differs by having a foreign-made avionics suite integrated within it, in the so called, "international avionics suite". The weapons suite is the same as the SMT and K/KUB versions. The design is a new modification intended for the MiG-29s used by Indian Air Force. It made its maiden flight on 4 February 2011. The standard includes the new Zhuk-M radar, new avionics, a IFR probe as well as new enhanced RD-33 series 3 turbojet engines. The modernization is part of a $900 million contract to upgrade the 69 fighters fleet.
MiG-29M2 / MiG-29MRCA
Two-seat version of MiG-29M. Identical characteristics to MiG-29M, with a slightly reduced ferry range of 1,800 km. RAC MiG presented in various air shows, including Fifth China International Aviation and Aerospace Exhibition (CIAAE 2004), Aero India 2005, MAKS 2005. It was once given designation MiG-29MRCA for marketing purpose and now evolved into the current MiG-35.
MiG-29SMP / MiG-29UBP
Upgrade for the Peruvian Air Force MiG-29 fleet. In August 2008 a contract of US$ 106 million was signed with RAC MiG for this custom SMT upgrade of an initial batch of eight MiG-29, with a provision for upgrade of the remainder of the Peruvian MiG-29 fleet. The single-seat version is designated SMP, whereas the twin-seat version is designated UBP.
The SMP standard features an improved ECM suite, avionics, sensors, pilot interface, and a MIL-STD-1553 databus. The interfaces include improved IRST capabilities for enhanced passive detection and tracking as well as better off-boresight launch capabilities, one MFCD and HOTAS. The N019M1 radar, a heavily modified and upgraded digital version of the N019 radar, is used instead of the standard N010 Zhuk-M used on the MiG-29SMT. The upgrade also includes a structural life-extension program (SLEP), the overhaul, upgrade of the original engines and the installation of an in-flight refuelling probe.
MiG-29OVT
The aircraft is one of the six pre-built MiG-29Ms before 1991, later received thrust-vectoring engine and fly-by-wire technology. It served as a thrust-vectoring engine testbed and technology demonstrator in various air shows to show future improvement in the MiG-29M. It has identical avionics to the MiG-29M. The only difference in the cockpit layout is an additional switch to turn on vector thrust function. The two RD-133 thrust-vectoring engines, each features unique rotating nozzles which can provide thrust vector deflection in all directions. However, despite its thrust-vectoring, other specifications were not officially emphasized. The aircraft is being demonstrated along with the MiG-29M2 in various air shows around the world for potential export. The aircraft is usually used as an aerobatic demonstrator.
MiG-35
A recently unveiled mature development of the MiG-29M/M2 and MiG-29K/KUB. NATO reporting code is "Fulcrum-F".

Read more about this topic:  MIG29

Famous quotes containing the word variants:

    Nationalist pride, like other variants of pride, can be a substitute for self-respect.
    Eric Hoffer (1902–1983)