Microsatellite - Limitations

Limitations

Microsatellites have proved to be versatile molecular markers, particularly for population analysis, but they are not without limitations. Microsatellites developed for particular species can often be applied to closely related species, but the percentage of loci that successfully amplify may decrease with increasing genetic distance. Point mutation in the primer annealing sites in such species may lead to the occurrence of ‘null alleles’, where microsatellites fail to amplify in PCR assays. Null alleles can be attributed to several phenomena. Sequence divergence in flanking regions can lead to poor primer annealing, especially at the 3’ section, where extension commences; preferential amplification of particular size alleles due to the competitive nature of PCR can lead to heterozygous individuals being scored for homozygosity (partial null). PCR failure may result when particular loci fail to amplify, whereas others amplify more efficiently and may appear homozygous on a gel assay, when they are in reality heterozygous in the genome. Null alleles complicate the interpretation of microsatellite allele frequencies and thus make estimates of relatedness faulty. Furthermore, stochastic effects of sampling that occurs during mating may change allele frequencies in a way that is very similar to the effect of null alleles; an excessive frequency of homozygotes causing deviations from Hardy-Weinberg equilibrium expectations. Since null alleles are a technical problem and sampling effects that occur during mating are a real biological property of a population, it is often very important to distinguish between them if excess homozygotes are observed.

When using microsatellites to compare species, homologous loci may be easily amplified in related species, but the number of loci that amplify successfully during PCR may decrease with increased genetic distance between the species in question. Mutation in microsatellite alleles is biased in the sense that larger alleles contain more bases, and are therefore likely to be mistranslated in DNA replication. Smaller alleles also tend to increase in size, whereas larger alleles tend to decrease in size, as they may be subject to an upper size limit; this constraint has been determined but possible values have not yet been specified. If there is a large size difference between individual alleles, then there may be increased instability during recombination at meiosis. In tumour cells, where controls on replication may be damaged, microsatellites may be gained or lost at an especially high frequency during each round of mitosis. Hence a tumour cell line might show a different genetic fingerprint from that of the host tissue.

Read more about this topic:  Microsatellite

Famous quotes containing the word limitations:

    That all may be so, but when I begin to exercise that power I am not conscious of the power, but only of the limitations imposed on me.
    William Howard Taft (1857–1930)

    The limitations of pleasure cannot be overcome by more pleasure.
    Mason Cooley (b. 1927)

    To note an artist’s limitations is but to define his talent. A reporter can write equally well about everything that is presented to his view, but a creative writer can do his best only with what lies within the range and character of his deepest sympathies.
    Willa Cather (1876–1947)