Microprocessor - 32-bit Designs

32-bit Designs

16-bit designs had only been on the market briefly when 32-bit implementations started to appear.

The most significant of the 32-bit designs is the Motorola MC68000, introduced in 1979. The 68K, as it was widely known, had 32-bit registers in its programming model but used 16-bit internal data paths, 3 16-bit Arithmetic Logic Units, and a 16-bit external data bus (to reduce pin count), and externally supported only 24-bit addresses (internally it worked with full 32 bit addresses). In PC-based IBM-compatible mainframes the MC68000 internal microcode was modified to emulate the 32-bit System/370 IBM mainframe. Motorola generally described it as a 16-bit processor, though it clearly has 32-bit capable architecture. The combination of high performance, large (16 megabytes or 224 bytes) memory space and fairly low cost made it the most popular CPU design of its class. The Apple Lisa and Macintosh designs made use of the 68000, as did a host of other designs in the mid-1980s, including the Atari ST and Commodore Amiga.

The world's first single-chip fully 32-bit microprocessor, with 32-bit data paths, 32-bit buses, and 32-bit addresses, was the AT&T Bell Labs BELLMAC-32A, with first samples in 1980, and general production in 1982 After the divestiture of AT&T in 1984, it was renamed the WE 32000 (WE for Western Electric), and had two follow-on generations, the WE 32100 and WE 32200. These microprocessors were used in the AT&T 3B5 and 3B15 minicomputers; in the 3B2, the world's first desktop supermicrocomputer; in the "Companion", the world's first 32-bit laptop computer; and in "Alexander", the world's first book-sized supermicrocomputer, featuring ROM-pack memory cartridges similar to today's gaming consoles. All these systems ran the UNIX System V operating system.

Intel's first 32-bit microprocessor was the iAPX 432, which was introduced in 1981 but was not a commercial success. It had an advanced capability-based object-oriented architecture, but poor performance compared to contemporary architectures such as Intel's own 80286 (introduced 1982), which was almost four times as fast on typical benchmark tests. However, the results for the iAPX432 was partly due to a rushed and therefore suboptimal Ada compiler.

The ARM first appeared in 1985. This is a RISC processor design, which has since come to dominate the 32-bit embedded systems processor space due in large part to its power efficiency, its licensing model, and its wide selection of system development tools. Semiconductor manufacturers generally license cores such as the ARM11 and integrate them into their own system on a chip products; only a few such vendors are licensed to modify the ARM cores. Most cell phones include an ARM processor, as do a wide variety of other products. There are microcontroller-oriented ARM cores without virtual memory support, as well as SMP applications processors with virtual memory.

Motorola's success with the 68000 led to the MC68010, which added virtual memory support. The MC68020, introduced in 1985 added full 32-bit data and address buses. The 68020 became hugely popular in the Unix supermicrocomputer market, and many small companies (e.g., Altos, Charles River Data Systems) produced desktop-size systems. The MC68030 was introduced next, improving upon the previous design by integrating the MMU into the chip. The continued success led to the MC68040, which included an FPU for better math performance. A 68050 failed to achieve its performance goals and was not released, and the follow-up MC68060 was released into a market saturated by much faster RISC designs. The 68K family faded from the desktop in the early 1990s.

Other large companies designed the 68020 and follow-ons into embedded equipment. At one point, there were more 68020s in embedded equipment than there were Intel Pentiums in PCs. The ColdFire processor cores are derivatives of the venerable 68020.

During this time (early to mid-1980s), National Semiconductor introduced a very similar 16-bit pinout, 32-bit internal microprocessor called the NS 16032 (later renamed 32016), the full 32-bit version named the NS 32032. Later the NS 32132 was introduced which allowed two CPUs to reside on the same memory bus, with built in arbitration. The NS32016/32 outperformed the MC68000/10 but the NS32332 which arrived at approximately the same time the MC68020 did not have enough performance. The third generation chip, the NS32532 was different. It had about double the performance of the MC68030 which was released around the same time. The appearance of RISC processors like the AM29000 and MC88000 (now both dead) influenced the architecture of the final core, the NS32764. Technically advanced, using a superscalar RISC core, internally overclocked, with a 64 bit bus, it was still capable of executing Series 32000 instructions through real time translation.

When National Semiconductor decided to leave the Unix market, the chip was redesigned into the Swordfish Embedded processor with a set of on chip peripherals. The chip turned out to be too expensive for the laser printer market and was killed. The design team went to Intel and there designed the Pentium processor, which is very similar to the NS32764 core internally. The big success of the Series 32000 was in the laser printer market, where the NS32CG16 with microcoded BitBlt instructions had very good price/performance and was adopted by large companies like Canon. By the mid-1980s, Sequent introduced the first symmetric multiprocessor (SMP) server-class computer using the NS 32032. This was one of the design's few wins, and it disappeared in the late 1980s. The MIPS R2000 (1984) and R3000 (1989) were highly successful 32-bit RISC microprocessors. They were used in high-end workstations and servers by SGI, among others. Other designs included the interesting Zilog Z80000, which arrived too late to market to stand a chance and disappeared quickly.

In the late 1980s, "microprocessor wars" started killing off some of the microprocessors. Apparently, with only one major design win, Sequent, the NS 32032 just faded out of existence, and Sequent switched to Intel microprocessors.

From 1985 to 2003, the 32-bit x86 architectures became increasingly dominant in desktop, laptop, and server markets, and these microprocessors became faster and more capable. Intel had licensed early versions of the architecture to other companies, but declined to license the Pentium, so AMD and Cyrix built later versions of the architecture based on their own designs. During this span, these processors increased in complexity (transistor count) and capability (instructions/second) by at least three orders of magnitude. Intel's Pentium line is probably the most famous and recognizable 32-bit processor model, at least with the public at large.

Read more about this topic:  Microprocessor

Famous quotes containing the word designs:

    I have no designs on society, or nature, or God. I am simply what I am, or I begin to be that. I live in the present. I only remember the past, and anticipate the future. I love to live.
    Henry David Thoreau (1817–1862)