Methods of Computing Square Roots - Vedic Duplex Method For Extracting A Square Root

Vedic Duplex Method For Extracting A Square Root

The Vedic duplex method is an ancient Indian method of extracting the square root. It is a variant of the digit by digit method for calculating the square root of a whole or decimal number one digit at a time. The duplex is the square of the central digit plus double the cross-product of digits equidistant from the center. The duplex is computed from the quotient digits (square root digits) computed thus far, but after the initial digits. The duplex is subtracted from the dividend digit prior to the second subtraction for the product of the quotient digit times the divisor digit. For perfect squares the duplex and the dividend will get smaller and reach zero after a few steps. For non-perfect squares the decimal value of the square root can be calculated to any precision desired. However, as the decimal places proliferate, the duplex adjustment gets larger and longer to calculate. The duplex method follows the Vedic ideal for an algorithm, one-line, mental calculation. It is flexible in choosing the first digit group and the divisor. Small divisors are to be avoided by starting with a larger initial group.

In short, to calculate the duplex of a number, double the product of each pair of equidistant digits plus the square of the center digit (of the digits to the right of the colon).

Number => Calculation = Duplex 574 ==> 2(5·4) + 72 = 89 406,739 ==> 2(4·9)+ 2(0·3)+ 2(6·7) = 72+0+84 = 156 123,456 ==> 2(1·6)+ 2(2·5)+ 2(3·4) = 12 +20 +24 = 56 88,900,777 ==> 2(8·7)+2(8·7)+2(9·7)+2(0·0) = 112+112+126+0 = 350 48329,03711 ==> 2(4·1)+2(8·1)+2(3·7)+2(2·3)+2(9·0)= 8+16+42+12+0 = 78

In a square root calculation the quotient digit set increases incrementally for each step.

Number => Calculation = Duplex: 1 ==> 12 = 1 14 ==>2(1·4) = 8 142 ==> 2(1·2) + 42 = 4 + 16 = 20 14,21 ==> 2(1·1) + 2(4·2) = 2 + 16 = 18 14213 ==> 6+8+4 = 18 142,135 ==> 10+24+4 = 38 1421356 ==> 12+40+12+1 = 65 1421,3562 ==> 4+48+20+6 = 78 142,135,623 ==> 6+16+24+10+9 = 65 142,1356,237 ==> 14+24+8+12+30 = 88 142,13562,373 ==> 6+56+12+4+36+25 = 139

Read more about this topic:  Methods Of Computing Square Roots

Famous quotes containing the words method, extracting, square and/or root:

    A method of child-rearing is not—or should not be—a whim, a fashion or a shibboleth. It should derive from an understanding of the developing child, of his physical and mental equipment at any given stage, and, therefore, his readiness at any given stage to adapt, to learn, to regulate his behavior according to parental expectations.
    Selma H. Fraiberg (20th century)

    Watching a woman make Russian pancakes, you might think that she was calling on the spirits or extracting from the batter the philosopher’s stone.
    Anton Pavlovich Chekhov (1860–1904)

    A man who is good enough to shed his blood for his country is good enough to be given a square deal afterwards. More than that no man is entitled to, and less than that no man shall have.
    Theodore Roosevelt (1858–1919)

    And a man of tan engages
    For the springtime of her pride,
    Eats the green by easy stages,
    Nibbles at the root beneath
    With intimidating teeth.
    Gwendolyn Brooks (b. 1917)