Menger Sponge - Formal Definition

Formal Definition

Formally, a Menger sponge can be defined as follows:

where M0 is the unit cube and

M_{n+1} := \left\{\begin{matrix}
(x,y,z)\in\mathbb{R}^3: &
\begin{matrix}\exists i,j,k\in\{0,1,2\}: (3x-i,3y-j,3z-k)\in M_n
\\ \mbox{and at most one of }i,j,k\mbox{ is equal to 1}\end{matrix}
\end{matrix}\right\}.

Read more about this topic:  Menger Sponge

Famous quotes containing the words formal and/or definition:

    True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....
    Marcel Proust (1871–1922)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)