Membrane Bioreactor - Major Considerations in MBR - Mixing and Hydrodynamics

Mixing and Hydrodynamics

Like in any other reactors, the hydrodynamics (or mixing) within an MBR plays an important role in determining the pollutant removal and fouling control within an MBR. It has a substantial effect on the energy usage and size requirements of an MBR, therefore the whole life cost of an MBR is high.

The removal of pollutants is greatly influenced by the length of time fluid elements spend in the MBR (i.e. the residence time distribution or RTD). The residence time distribution is a description of the hydrodynamics/mixing in the system and is determined by the design of the MBR (e.g. MBR size, inlet/recycle flowrates, wall/baffle/mixer/aerator positioning, mixing energy input). An example of the effect of mixing is that a continuous stirred-tank reactor will not have as high pollutant conversion per unit volume of reactor as a plug flow reactor.

The control of fouling, as previously mentioned, is primarily undertaken using coarse bubble aeration. The distribution of bubbles around the membranes, the shear at the membrane surface for cake removal and the size of the bubble are greatly influenced by the mixing/hydrodynamics of the system. The mixing within the system can also influence the production of possible foulants. For example, vessels not completely mixed (i.e. plug flow reactors) are more susceptible to the effects of shock loads which may cause cell lysis and release of soluble microbial products.

Many factors affect the hydrodynamics of wastewater processes and hence MBRs. These range from physical properties (e.g. mixture rheology and gas/liquid/solid density etc.) to the fluid boundary conditions (e.g. inlet/outlet/recycle flowrates, baffle/mixer position etc.). However, many factors are peculiar to MBRs, these cover the filtration tank design (e.g. membrane type, multiple outlets attributed to membranes, membrane packing density, membrane orientation etc.) and its operation (e.g. membrane relaxation, membrane back flush etc.).

The mixing modelling and design techniques applied to MBRs are very similar to those used for conventional activated sludge systems. They include the relatively quick and easy compartmental modelling technique which will only derive the RTD of a process (e.g. the MBR) or the process unit (e.g. membrane filtration vessel) and relies on broad assumptions of the mixing properties of each sub-unit. Computational fluid dynamics modelling (CFD) on the other hand does not rely on broad assumptions of the mixing characteristics and attempts to predict the hydrodynamics from a fundamental level. It is applicable to all scales of fluid flow and can reveal much information about the mixing in a process, ranging from the RTD to the shear profile on a membrane surface. Visualisation of MBR CFD modelling results is shown in the image.

Investigations of MBR hydrodynamics have occurred at many different scales, ranging from examination of shear stress at the membrane surface to RTD analysis of the whole MBR. Cui et al. (2003) investigated the movement of Taylor bubbles through tubular membranes. Khosravi, M. (2007) examined the entire membrane filtration vessel using CFD and velocity measurements, while Brannock et al. (2007) examined the entire MBR using tracer study experiments and RTD analysis.

Read more about this topic:  Membrane Bioreactor, Major Considerations in MBR

Famous quotes containing the word mixing:

    Give me Catholicism every time. Father Cheeryble with his thurible; Father Chatterjee with his liturgy. What fun they have with all their charades and conundrums! If it weren’t for the Christianity they insist on mixing in with it, I’d be converted tomorrow.
    Aldous Huxley (1894–1963)